Incorporating a measure of local scale in voxel-based 3-D image registration

We present a new class of approaches for rigid-body registration and their evaluation in studying multiple sclerosis (MS) via multiprotocol magnetic resonance imaging (MRI). Three pairs of rigid-body registration algorithms were implemented, using cross-correlation and mutual information (MI), opera...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 22; no. 2; pp. 228 - 237
Main Authors Nyul, L.G., Udupa, J.K., Saha, P.K.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a new class of approaches for rigid-body registration and their evaluation in studying multiple sclerosis (MS) via multiprotocol magnetic resonance imaging (MRI). Three pairs of rigid-body registration algorithms were implemented, using cross-correlation and mutual information (MI), operating on original gray-level images, and utilizing the intermediate images resulting from our new scale-based method. In the scale image, every voxel has the local "scale" value assigned to it, defined as the radius of the largest ball centered at the voxel with homogeneous intensities. Three-dimensional image data of the head were acquired from ten MS patients for each of six MRI protocols. Images in some of the protocols were acquired in registration. The registered pairs were used as ground truth. Accuracy and consistency of the six registration methods were measured within and between protocols for known amounts of misregistrations. Our analysis indicates that there is no "best" method. For medium misregistration, the method using MI, for small and large misregistration the method using normalized cross-correlation performs best. For high-resolution data the correlation method and for low-resolution data the MI method, both using the original gray-level images, are the most consistent. We have previously demonstrated the use of local scale information in fuzzy connectedness segmentation and image filtering. Scale may also have potential for image registration as suggested by this work.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2002.808358