Sea-ice-associated algae and zooplankton fecal pellets fuel organic particle export in the seasonally ice-covered northwestern Labrador Sea
Ocean warming and Arctic sea-ice decline are expected to affect the biological pump efficiency by altering the timing, quantity, quality, and composition of export production. However, the origins and composition of sinking organic matter are still generally understudied for the oceans, especially i...
Saved in:
Published in | Biogeosciences Vol. 22; no. 11; pp. 2517 - 2540 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
04.06.2025
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ocean warming and Arctic sea-ice decline are expected to affect the biological pump efficiency by altering the timing, quantity, quality, and composition of export production. However, the origins and composition of sinking organic matter are still generally understudied for the oceans, especially in ice-covered areas. Here, we use the compound-specific isotope analysis (CSIA) of amino acids (AAs) to investigate the sources and composition of exported organic matter from a sediment-trap-derived time series of sinking particles collected at depths of 469 and 915 m at the edge of Saglek Bank in the northwestern Labrador Sea from October 2017 to July 2019. The outer edge of Saglek Bank is located at the confluence of cold and fresh Arctic outflow and relatively warmer Atlantic waters. The area is subject to seasonal sea-ice cover and is a biological hotspot for benthic organisms, including deep-sea corals and sponges. Sea ice was present for ∼ 50 % to 60 % of the deployment days in both cycles. Phytoplankton blooms at our study site co-occurred with the onset of sea-ice melt. Microalgal taxonomy indicated the presence of ice-associated diatoms in the sinking particles during the spring bloom in 2018, confirming that sea-ice algae contributed to the organic particle export at our study site. The presence of abundant copepods and copepod nauplii caught in the sediment traps was consistent with a high abundance of copepods in overlying epipelagic waters. Stable carbon isotopes (δ13C) of essential amino acids (EAAs) of the sinking particles revealed a potentially important contribution of sea-ice algae as a carbon source at the base of the food web to sinking particles, with only minor modification by microbial resynthesis. Stable nitrogen isotopes (δ15N) of AAs of sinking particles provided independent evidence of the minor bacterial degradation, and Bayesian mixing models based on normalized δ15N-AA values revealed the dominant contribution of fecal pellets (76 %–96 %) to the sinking particles. Our study demonstrates the importance of sea-ice algae and fecal pellets to the biological pump in the seasonally ice-covered northwestern Labrador Sea, with sea-ice algae exported either directly via passive sinking or indirectly via zooplankton grazing and with fecal pellets dominating the organic particle fluxes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1726-4189 1726-4170 1726-4189 |
DOI: | 10.5194/bg-22-2517-2025 |