Phylogeny strongly drives seed dormancy and quality in a climatically buffered hotspot for plant endemism

Models of costs and benefits of dormancy (D) predict that the evolutionarily stable strategy in long-term stable environments is for non-dormancy (ND), but this prediction remains to be tested empirically. We reviewed seed traits of species in the climatically buffered, geologically stable and nutri...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 119; no. 2; pp. 267 - 277
Main Authors Dayrell, Roberta L. C., Garcia, Queila S., Negreiros, Daniel, Baskin, Carol C., Baskin, Jerry M., Silveira, Fernando A. O.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Models of costs and benefits of dormancy (D) predict that the evolutionarily stable strategy in long-term stable environments is for non-dormancy (ND), but this prediction remains to be tested empirically. We reviewed seed traits of species in the climatically buffered, geologically stable and nutrient-impoverished campo rupestre grasslands in Brazil to test the hypothesis that ND is favoured over D. We examined the relative importance of life-history traits and phylogeny in driving the evolution of D and assessed seed viability at the community level. Germination and viability data were retrieved from 67 publications and ND/D was determined for 168 species in 25 angiosperm families. We also obtained the percentage of embryoless, viable and dormant seeds for 74 species. Frequencies of species with dormant and non-dormant seeds were compared with global databases of dormancy distribution. The majority of campo rupestre taxa (62·5 %) had non-dormant seeds, and the ND/D ratio was the highest for any vegetation type on Earth. Dormancy was unrelated to other species life-history traits, suggesting that contemporary factors are poor predictors of D. We found a significant phylogenetic structure in the dormancy categorical trait. Dormancy diversity was highly skewed towards the root of the phylogenetic tree and there was a strong phylogenetic signal in the data, suggesting a major role of phylogeny in determining the evolution of D versus ND and seed viability. Quantitative analysis of the data revealed that at least half of the seeds produced by 46 % of the surveyed populations were embryoless and/or otherwise non-viable. Our results support the view that long-term climatic and geological stability favour ND. Seed viability data show that campo rupestre species have a markedly low investment in regeneration from seeds, highlighting the need for specific in situ and ex situ conservation strategies to avoid loss of biodiversity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-7364
1095-8290
1095-8290
DOI:10.1093/aob/mcw163