Confirmation of age-related alterations in inhibitory control using a modified minimally delayed oculomotor response (MDOR) task

Considerable effort has been made to measure and understand the effects of ageing on inhibitory control using a range of behavioural tasks. In the minimally delayed oculomotor response (MDOR) task, participants are presented with a simple visual target step with variable target display duration (TDD...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 9; p. e11610
Main Authors Knox, Paul C, Liang, Dongmei
Format Journal Article
LanguageEnglish
Published United States PeerJ, Inc 16.06.2021
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Considerable effort has been made to measure and understand the effects of ageing on inhibitory control using a range of behavioural tasks. In the minimally delayed oculomotor response (MDOR) task, participants are presented with a simple visual target step with variable target display duration (TDD), and instructed to saccade to the target not when it appears (a prosaccade response), but when it disappears (i.e., on target offset). Using this task, we recently found higher error rates and longer latencies for correct responses in older compared to younger participants. Here we have used a modified MDOR task, in which participants were presented with static placeholders identifying potential target positions (increasing spatial information), and three TDDs rather than two (reducing temporal predictability). We found that the yield of analysable trials was generally higher with this modified task and in 28 older (mean ± SD age: 65 ± 7 y) and 25 younger (26 ± 7 y) participants the total overall error rate was again higher in the older group (30 ± 18% vs. 16 ± 11%). An analysis of the temporal distribution of responses demonstrated a pronounced peak in error production around 150 ms (young) or 200 ms (old) after target onset. When we recalculated the error rate focusing on these errors, it was again significantly higher in the older group. The latency of correct responses (to offsets) was significantly increased in the older group, although much of this increase was accounted for by expected age-related visuomotor slowing. However, both latency and distribution data suggested that while older participants could generate increased levels of inhibition, they could not maintain these levels as efficiently as the younger participants. In 24 participants (15 old, 9 young) who completed both versions of the MDOR task, neither latency nor error rates differed significantly between versions. These results confirm an inhibitory control deficit in healthy older participants, and suggest that the dynamics of inhibitory control are also affected by ageing. The modified MDOR task yields more data while not altering basic performance parameters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.11610