Chronic regulation of arterial blood pressure in ANP transgenic and knockout mice : Role of cardiovascular sympathetic tone

Atrial natriuretic peptide (ANP) lowers arterial blood pressure (ABP) chronically, in association with vasodilation of the resistance vasculature. The mechanism mediating the chronic relaxant effect of ANP is likely indirectly mediated by interactions with tonic vasoeffector mechanisms, inasmuch as...

Full description

Saved in:
Bibliographic Details
Published inCardiovascular research Vol. 43; no. 2; pp. 437 - 444
Main Authors MELO, L. G, VERESS, A. T, ACKERMANN, U, STEINHELPER, M. E, PANG, S. C, YAT TSE, SONNENBERG, H
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.08.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atrial natriuretic peptide (ANP) lowers arterial blood pressure (ABP) chronically, in association with vasodilation of the resistance vasculature. The mechanism mediating the chronic relaxant effect of ANP is likely indirectly mediated by interactions with tonic vasoeffector mechanisms, inasmuch as the resistance vasculature is relatively insensitive to direct cGMP-mediated relaxation by ANP. On the basis of evidence that ANP has widespread sympatholytic activity, the current study investigated whether the chronic hypotensive effect of ANP is mediated by attenuation of tonic cardiovascular sympathetic tone. Total plasma catecholamine concentration and changes in basal ABP and heart rate (HR) following autonomic ganglionic blockade were measured as indices of underlying sympathetic nerve activity in hypotensive ANP-overexpressing transgenic mice (TTR-ANP), hypertensive ANP knockout mice (-/-) and the genetically-matched wild type (NT and +/+, respectively) control mice. Pressor and chronotropic responses to norepinephrine infusion were measured in ganglion-blocked mice of all genotypes, and norepinephrine receptor binding was assessed in representative tissues of -/- and +/+ mice, in order to determine whether peripheral adrenergic receptor responsiveness is altered by ANP-genotype. Basal ABP was significantly lower in TTR-ANP and higher in -/- compared to their wild-type controls. Basal HR did not differ significantly between mutant and control mice. Autonomic ganglionic blockade reduced ABP and HR in all genotypes, however, the relative decrease in ABP was significantly smaller in TTR-ANP and greater in -/- mice than in their respective controls. Total plasma catecholamine was significantly higher in -/- than in +/+ mice but did not differ significantly between TTR-ANP and NT mice. Norepinephrine infusion during ganglionic blockade elicited quantitatively similar pressor and chronotropic responses in mutant and control mice. Tissue norepinephrine binding did not differ significantly between -/- and +/+ mice. The present study shows that differences in endogenous ANP activity in mice, resulting in chronic alterations in ABP are accompanied by directional changes in underlying cardiovascular sympathetic tone, and suggests that the chronic vasodilator effect of ANP is, at least partially, dependent on attenuation of vascular sympathetic tone, possibly at a prejunctional site(s).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-6363
1755-3245
DOI:10.1016/S0008-6363(99)00104-2