Protein Phosphatase-Mediated Regulation of Protein Kinase C during Long-Term Depression in the Adult Hippocampus In Vivo

The neural substrates of learning and memory are thought to involve use-dependent long-term changes in synaptic function, including long-term depression (LTD) of synaptic strength. One biochemical event hypothesized to contribute to the maintenance and expression of LTD is decreased protein phosphor...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 20; no. 19; pp. 7199 - 7207
Main Authors Thiels, Edda, Kanterewicz, Beatriz I, Knapp, Lauren T, Barrionuevo, German, Klann, Eric
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 01.10.2000
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The neural substrates of learning and memory are thought to involve use-dependent long-term changes in synaptic function, including long-term depression (LTD) of synaptic strength. One biochemical event hypothesized to contribute to the maintenance and expression of LTD is decreased protein phosphorylation, caused by a decrease in protein kinase activity and/or an increase in protein phosphatase activity. We tested whether the activity of protein kinase C (PKC) decreases after the induction of LTD in area CA1 of the adult hippocampus in vivo, and then investigated the mechanism responsible for the LTD-associated alteration in PKC activity. We found that LTD was associated with a significant decrease in both autonomous and cofactor-dependent PKC activity. The decrease in PKC activity was prevented by NMDA receptor blockade and was not accompanied by a decrease in the level of either PKCalpha, beta, gamma, or zeta. Western blot analysis with phosphospecific antibodies revealed that phosphorylation of Ser-657 on the catalytic domain of PKCalpha (Ser-660 on PKCbetaII) was decreased significantly after the induction of LTD, and that this dephosphorylation was prevented by the protein phosphatase inhibitor okadaic acid. The decrease in autonomous and cofactor-dependent PKC activity likewise was prevented by okadaic acid. These findings suggest that LTD in the adult hippocampus in vivo involves a decrease in PKC activity that is mediated, at least in part, by dephosphorylation of the catalytic domain of PKC by protein phosphatases activated after LTD-inducing stimulation. Our findings are consistent with the idea that protein dephosphorylation contributes to the expression of LTD.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.20-19-07199.2000