Study of the Chemical Vapor Deposition of Nano-Sized Carbon Phases on {001} Silicon

Different nano-sized phases were synthesized using chemical vapor deposition (CVD) processes. The deposition took place on {001} Si substrates at about 1150–1160 °C. The carbon source was thermally decomposed acetone (CH3)2CO in a main gas flow of argon. We performed experiments at two ((CH3)2CO + A...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 22; p. 7190
Main Authors Milenov, Teodor, Trifonov, Dimitar, Kalchevski, Dobromir A., Kolev, Stefan, Avramova, Ivalina, Russev, Stoyan, Genkov, Kaloyan, Avdeev, Georgi, Dimov, Dimitar, Karaivanova, Desislava M., Valcheva, Evgenia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Different nano-sized phases were synthesized using chemical vapor deposition (CVD) processes. The deposition took place on {001} Si substrates at about 1150–1160 °C. The carbon source was thermally decomposed acetone (CH3)2CO in a main gas flow of argon. We performed experiments at two ((CH3)2CO + Ar)/Ar) ratios and observed that two visually distinct types of layers were deposited after a one-hour deposition process. The first layer type, which appears more inhomogeneous, has areas of SiO2 (about 5% of the surface area substrates) beside shiny bright and rough paths, and its Raman spectrum corresponds to diamond-like carbon, was deposited at a (CH3)2CO+Ar)/Ar = 1/5 ratio. The second layer type, deposited at (CH3)2CO + Ar)/Ar = a 1/0 ratio, appears homogeneous and is very dark brown or black in color and its Raman spectrum pointed to defect-rich multilayered graphene. The performed structural studies reveal the presence of diamond and diamond polytypes and seldom SiC nanocrystals, as well as some non-continuously mixed SiC and graphene-like films. The performed molecular dynamics simulations show that there is no possibility of deposition of sp3-hybridized on sp2-hybridized carbon, but there are completely realistic possibilities of deposition of sp2- on sp2- and sp3- on sp3-hybridized carbon under different scenarios.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16227190