Lacticaseibacillus paracsei HY7207 Alleviates Hepatic Steatosis, Inflammation, and Liver Fibrosis in Mice with Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty acid disease (NAFLD) is caused by a build-up of fat in the liver, inducing local inflammation and fibrosis. We evaluated the effects of probiotic lactic acid-generating bacteria (LAB) derived from a traditional fermented beverage in a mouse model of NAFLD. The LAB isolated from t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 25; no. 18; p. 9870
Main Authors Kim, Hyeon-Ji, Jeon, Hye-Jin, Kim, Dong-Gun, Kim, Joo-Yun, Shim, Jae-Jung, Lee, Jae-Hwan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.09.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Non-alcoholic fatty acid disease (NAFLD) is caused by a build-up of fat in the liver, inducing local inflammation and fibrosis. We evaluated the effects of probiotic lactic acid-generating bacteria (LAB) derived from a traditional fermented beverage in a mouse model of NAFLD. The LAB isolated from this traditional Korean beverage were screened using the human hepatic cell line HepG2, and HY7207 (HY7207), which was the most effective inhibitor of fat accumulation, was selected for further study. HY7207 showed stable productivity in industrial-scale culture. Whole-genome sequencing of HY7207 revealed that the genome was 2.88 Mbp long, with 46.43% GC contents and 2778 predicted protein-coding DNA sequences (CDSs). HY7207 reduced the expression of lipogenesis and hepatic apoptosis-related genes in HepG2 cells treated with palmitic acid. Furthermore, the administration of 10 CFU/kg/day of HY7207 for 8 weeks to mice fed an NAFLD-inducing diet improved their physiologic and serum biochemical parameters and ameliorated their hepatic steatosis. In addition, HY7207 reduced the hepatic expression of genes important for lipogenesis ( , , / , , and ), inflammation ( , , and ), and fibrosis ( , , and ). Finally, HY7207 affected the expression of the apoptosis-related genes (encoding Bcl2 associated X, an apoptosis regulator) and (encoding B-cell lymphoma protein 2) in the liver. These data suggest that HY7207 consumption ameliorates NAFLD in mice through effects on liver steatosis, inflammation, fibrosis, and hepatic apoptosis. Thus, HY7207 may be suitable for use as a functional food supplement for patients with NAFLD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25189870