Novel Function of Osteocalcin in Chondrocyte Differentiation and Endochondral Ossification Revealed on a CRISPR/Cas9 bglap-bglap2 Deficiency Mouse Model
Endochondral ossification is the process by which cartilage is mineralized into bone, and is essential for the development of long bones. Osteocalcin (OCN), a protein abundant in bone matrix, also exhibits high expression in chondrocytes, especially hypertrophic chondrocytes, while its role in endoc...
Saved in:
Published in | International journal of molecular sciences Vol. 25; no. 18; p. 9945 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.09.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Endochondral ossification is the process by which cartilage is mineralized into bone, and is essential for the development of long bones. Osteocalcin (OCN), a protein abundant in bone matrix, also exhibits high expression in chondrocytes, especially hypertrophic chondrocytes, while its role in endochondral ossification remains unclear. Utilizing a new CRISPR/Cas9-mediated
deficiency (OCN
) mouse model generated in our laboratory, we provide the first evidence of OCN's regulatory function in chondrocyte differentiation and endochondral ossification. The OCN
mice exhibited significant delays in primary and secondary ossification centers compared to wild-type mice, along with increased cartilage length in growth plates and hypertrophic zones during neonatal and adolescent stages. These anomalies indicated that OCN deficiency disturbed endochondral ossification during embryonic and postnatal periods. Mechanism wise, OCN deficiency was found to increase chondrocyte differentiation and postpone vascularization process. Furthermore, bone marrow mesenchymal stromal cells (BMSCs) from OCN
mice demonstrated an increased capacity for chondrogenic differentiation. Transcriptional network analysis implicated that BMP and TGF-β signaling pathways were highly affected in OCN
BMSCs, which is closely associated with cartilage development and maintenance. This elucidation of OCN's function in chondrocyte differentiation and endochondral ossification contributes to a more comprehensive understanding of its impact on skeletal development and homeostasis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25189945 |