Daily Locomotion Recognition and Prediction: A Kinematic Data-Based Machine Learning Approach
More versatile, user-independent tools for recognizing and predicting locomotion modes (LMs) and LM transitions (LMTs) in natural gaits are still needed. This study tackles these challenges by proposing an automatic, user-independent recognition and prediction tool using easily wearable kinematic mo...
Saved in:
Published in | IEEE access Vol. 8; pp. 33250 - 33262 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | More versatile, user-independent tools for recognizing and predicting locomotion modes (LMs) and LM transitions (LMTs) in natural gaits are still needed. This study tackles these challenges by proposing an automatic, user-independent recognition and prediction tool using easily wearable kinematic motion sensors for innovatively classifying several LMs (walking direction, level-ground walking, ascend and descend stairs, and ascend and descend ramps) and respective LMTs. We compared diverse state-of-the-art feature processing and dimensionality reduction methods and machine-learning classifiers to find an effective tool for recognition and prediction of LMs and LMTs. The comparison included kinematic patterns from 10 able-bodied subjects. The more accurate tools were achieved using min-max scaling [-1; 1] interval and "mRMR plus forward selection" algorithm for feature normalization and dimensionality reduction, respectively, and Gaussian support vector machine classifier. The developed tool was accurate in the recognition (accuracy >99% and >96%) and prediction (accuracy >99% and >93%) of daily LMs and LMTs, respectively, using exclusively kinematic data. The use of kinematic data yielded an effective recognition and prediction tool, predicting the LMs and LMTs one-step-ahead. This timely prediction is relevant for assistive devices providing personalized assistance in daily scenarios. The kinematic data-based machine learning tool innovatively addresses several LMs and LMTs while allowing the user to self-select the leading limb to perform LMTs, ensuring a natural gait. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2971552 |