The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites

The dielectric spectroscopy of short carbon fiber/silica composite in the frequency range from 8.2 to 12.4 GHz at temperatures between 30 and 600 °C has been performed. The composite was prepared by conventional ceramic processing. The real part of the permittivity increases with increasing temperat...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 48; no. 3; pp. 788 - 796
Main Authors Cao, Mao-Sheng, Song, Wei-Li, Hou, Zhi-Ling, Wen, Bo, Yuan, Jie
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The dielectric spectroscopy of short carbon fiber/silica composite in the frequency range from 8.2 to 12.4 GHz at temperatures between 30 and 600 °C has been performed. The composite was prepared by conventional ceramic processing. The real part of the permittivity increases with increasing temperature, which is attributed to the shortened relaxation time of electron polarization, and the imaginary part also increases which is ascribed to the increasing electrical conductivity of the carbon fibers. The effect of frequency is found in reflection coefficient and absorption coefficient, and the corresponding mechanisms for the effect are proposed. Results indicate that the composite has good electromagnetic interference shielding property. By calculating the microwave-absorption as a single-layer absorber, we find that the reflection loss varies with the changes of thickness and temperature, due to the deviation of impedance matching condition.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2009.10.028