A novel strategy combining electrospraying and one-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin
Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study,...
Saved in:
Published in | Carbon (New York) Vol. 179; pp. 68 - 79 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g−1 at 0.5 A g−1 in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products.
[Display omitted]
•A strategy combining electrospraying and carbonization to get carbon was developed.•The synthesized ultralight carbon possessed honeycomb-like multilayered structure.•The obtained carbon had partially graphitized structure and hierarchical pore system.•The prepared carbon as electrode exhibited excellent electrochemical performance. |
---|---|
AbstractList | Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g⁻¹ at 0.5 A g⁻¹ in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products. Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g−1 at 0.5 A g−1 in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products. [Display omitted] •A strategy combining electrospraying and carbonization to get carbon was developed.•The synthesized ultralight carbon possessed honeycomb-like multilayered structure.•The obtained carbon had partially graphitized structure and hierarchical pore system.•The prepared carbon as electrode exhibited excellent electrochemical performance. Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g−1 at 0.5 A g−1 in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products. |
Author | Huan, Siqi Cheng, Wanli Wang, Ge Hu, Yi Cheng, Haitao Han, Guangping Cao, Meilian Wang, Qingxiang Niu, Zhaoxuan |
Author_xml | – sequence: 1 givenname: Meilian surname: Cao fullname: Cao, Meilian organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China – sequence: 2 givenname: Qingxiang surname: Wang fullname: Wang, Qingxiang organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China – sequence: 3 givenname: Wanli surname: Cheng fullname: Cheng, Wanli organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China – sequence: 4 givenname: Siqi surname: Huan fullname: Huan, Siqi organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China – sequence: 5 givenname: Yi surname: Hu fullname: Hu, Yi organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China – sequence: 6 givenname: Zhaoxuan surname: Niu fullname: Niu, Zhaoxuan organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China – sequence: 7 givenname: Guangping orcidid: 0000-0001-5434-4878 surname: Han fullname: Han, Guangping email: guangping.han@nefu.edu.cn organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China – sequence: 8 givenname: Haitao surname: Cheng fullname: Cheng, Haitao organization: International Centre for Bamboo and Rattan, Beijing, 100102, China – sequence: 9 givenname: Ge surname: Wang fullname: Wang, Ge email: wangge@icbr.ac.cn organization: International Centre for Bamboo and Rattan, Beijing, 100102, China |
BookMark | eNqFUctuFDEQtFAisQn8AQdLXLjMYI_nyQEpikJAisSFnC2v3bPrxWMPtnel4YP4TnozOeUAJ6u7q6rbVVfkwgcPhLzjrOSMtx8PpVZxG3xZsYqXTJSsFa_IhvedKEQ_8AuyYYz1RVtV4jW5SumAZd3zekP-3FAfTuBoylFl2C1Uh2lrvfU7Cg50jiHNUS3nWnlDcXGRMsx03Wh_q2yDp2OINO-BzhFmFddeGOnRoaqzu32me2QuZ-3C2Z9AJxxZpxaIYJ616BjDRLc2TCqlwkC0J5whG495Qy5H5RK8fX6vyeOXux-3X4uH7_ffbm8eCl0LkYtK82bsG9Ubo7gYatPVbdN1RkA_Ak6g4YPpB4NdNkAntsy07aga0XJTw8jFNfmw6s4x_DpCynKySYNzykM4Jlk1qNAJXlcIff8CegjH6PE6RNUD4wNrG0TVK0qjkSnCKOdoJxUXyZk8hycPcv2-PIcnmZAYHtI-vaBpm59sRUOt-x_580oGdOpkIcqkLXgNxkZMVJpg_y3wF5gzvng |
CitedBy_id | crossref_primary_10_1016_j_cjche_2022_04_020 crossref_primary_10_1016_j_est_2022_106595 crossref_primary_10_1002_jsfa_12846 crossref_primary_10_1016_j_jiec_2022_02_030 crossref_primary_10_1016_j_fuel_2024_133707 crossref_primary_10_1149_2162_8777_ad76d8 crossref_primary_10_1016_j_cej_2021_134099 crossref_primary_10_1016_j_jpowsour_2024_234216 crossref_primary_10_1021_acsami_1c21009 crossref_primary_10_1016_j_est_2023_106671 crossref_primary_10_1016_j_jpcs_2023_111509 crossref_primary_10_1007_s11837_022_05667_5 crossref_primary_10_1016_j_cej_2023_148176 crossref_primary_10_59761_RCR5082 crossref_primary_10_1016_j_matlet_2022_133194 crossref_primary_10_1016_j_diamond_2024_111866 crossref_primary_10_1016_j_cej_2024_154829 crossref_primary_10_1007_s11664_023_10223_1 crossref_primary_10_1016_j_carbon_2022_01_043 crossref_primary_10_1021_acsaem_4c01294 crossref_primary_10_1016_j_resconrec_2024_107905 crossref_primary_10_1021_acsami_1c16532 crossref_primary_10_3390_nano13111744 crossref_primary_10_1016_j_est_2023_110362 crossref_primary_10_1016_j_jechem_2022_05_006 crossref_primary_10_1007_s10934_022_01300_7 crossref_primary_10_3390_ma15238335 crossref_primary_10_3390_c9040109 crossref_primary_10_1007_s44246_022_00009_1 crossref_primary_10_3389_fbael_2024_1422400 crossref_primary_10_1016_j_apsusc_2022_155080 crossref_primary_10_1016_j_mtcomm_2022_104911 crossref_primary_10_1016_j_electacta_2023_142410 crossref_primary_10_1016_j_carbpol_2021_119049 crossref_primary_10_1016_j_chemosphere_2022_135840 crossref_primary_10_1016_j_jelechem_2024_118423 crossref_primary_10_1016_j_jece_2022_108851 crossref_primary_10_1016_j_cej_2025_159219 crossref_primary_10_1016_j_colsurfa_2022_130728 crossref_primary_10_1016_j_est_2023_108633 crossref_primary_10_1016_j_carbon_2023_02_060 crossref_primary_10_1016_j_est_2022_104910 crossref_primary_10_1016_j_est_2022_105448 crossref_primary_10_1016_j_eng_2021_12_017 crossref_primary_10_1002_aesr_202200152 crossref_primary_10_1016_j_cej_2023_143574 crossref_primary_10_1016_j_gee_2022_01_002 crossref_primary_10_1016_j_colsurfa_2024_133292 crossref_primary_10_1021_acs_langmuir_3c00627 crossref_primary_10_1007_s42773_024_00316_3 crossref_primary_10_1016_j_est_2024_113271 crossref_primary_10_1016_j_indcrop_2023_117342 crossref_primary_10_1016_j_diamond_2022_109165 crossref_primary_10_1016_j_diamond_2023_110528 crossref_primary_10_1016_j_est_2024_115170 crossref_primary_10_2139_ssrn_4142020 crossref_primary_10_1016_j_apsusc_2021_151888 |
Cites_doi | 10.1016/j.apsusc.2018.06.189 10.1016/j.nanoen.2015.10.038 10.1021/acsami.6b02214 10.1351/pac198557040603 10.1007/s10854-020-03123-1 10.1016/j.carbon.2010.11.043 10.1039/C8GC01748D 10.1016/j.biortech.2013.01.044 10.1016/j.ccr.2019.213093 10.1016/j.carbon.2019.04.029 10.1002/pc.20946 10.1039/C7GC00506G 10.1016/j.ijbiomac.2020.04.102 10.1021/acssuschemeng.6b02585 10.1016/j.eurpolymj.2004.10.010 10.1016/j.cocis.2014.08.004 10.1016/j.jaap.2008.03.007 10.1021/acs.jpcc.9b06058 10.1002/app.31396 10.1002/aenm.201802386 10.1016/j.nanoen.2015.03.013 10.1016/j.cej.2019.123263 10.1021/acsami.9b16458 10.1016/j.cej.2019.122543 10.1002/chem.200800639 10.1002/cssc.201403486 10.1016/j.carbon.2019.01.035 10.1016/j.nanoen.2012.10.001 10.1002/anie.201407917 10.1016/j.compscitech.2019.107774 10.1016/j.nanoen.2015.04.007 10.1039/C9CC03039E 10.1016/j.nanoen.2016.07.020 10.1016/j.electacta.2019.134878 10.1021/nl2023433 10.1002/smll.201902348 10.1016/j.pecs.2019.100788 10.1016/j.electacta.2018.11.074 10.1016/j.jpowsour.2018.11.032 10.1016/j.indcrop.2012.04.049 10.1016/j.jpowsour.2015.03.141 10.1016/j.compositesb.2018.11.085 10.1016/j.jpowsour.2017.07.097 10.1016/S1452-3981(23)14018-1 10.1007/s42452-019-1126-8 10.1039/C7GC01681F 10.1002/anie.201802753 10.1038/s41893-020-0538-1 10.1021/am4043867 10.1039/C2EE23284G 10.1007/s10853-019-04343-5 10.1002/adma.201602913 10.1016/j.fuel.2006.12.013 10.1016/j.electacta.2015.07.076 10.1039/C5GC01054C 10.1016/j.jpowsour.2018.06.100 10.1007/s10854-019-02303-y 10.1021/acsnano.5b00860 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jul 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2021 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2021.03.063 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 79 |
ExternalDocumentID | 10_1016_j_carbon_2021_03_063 S0008622321003778 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-2c15f85a8dda1394d746577d3e8fe5f8e519d89d46509e73b0d66fa5361d4ef13 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 05:34:58 EDT 2025 Mon Jul 14 08:16:42 EDT 2025 Thu Apr 24 22:59:00 EDT 2025 Tue Aug 05 03:08:29 EDT 2025 Fri Feb 23 02:41:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitors Electrospraying One-step carbonization Honeycomb-like multilayered carbon Biomass-derived lignin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-2c15f85a8dda1394d746577d3e8fe5f8e519d89d46509e73b0d66fa5361d4ef13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5434-4878 |
PQID | 2549019065 |
PQPubID | 2045273 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2551973142 proquest_journals_2549019065 crossref_primary_10_1016_j_carbon_2021_03_063 crossref_citationtrail_10_1016_j_carbon_2021_03_063 elsevier_sciencedirect_doi_10_1016_j_carbon_2021_03_063 |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Dhinakaran, Lavanya, Vigneswari, Ravichandran, Vijayakumar (bib10) 2020; 27 Schlee, Hosseinaei, Baker, Landmér, Tomani, Mostazo-López, Cazorla-Amorós, Herou, Titirici (bib46) 2019; 145 Li, Jiang, Dou, Wu, Huang, Feng, Yang, Yu, Zhao (bib60) 2011; 49 Wang, Guo, Penchev, Ruiz, Bozhilov, Yan, Ozkan, Ozkan (bib7) 2013; 2 Jacobs, Anandjiwala, Maaza (bib26) 2010; 115 Cheng, Huang, Xiao, Yao, Yuan, Li, Hu, Wang, Wan, Zhou (bib34) 2015; 15 Han, Wang, Yue, Mei, Chen, Huang, Wu, Xu (bib62) 2019; 149 Xiong, Han, Wang, Li, Qin, Chen, Chu (bib25) 2017; 5 Zhang, Lin, Lin, Yin, Lu, Liu, Zhao (bib17) 2015; 8 Wang, Liang, Gao, Qu, Zou (bib54) 2020; 404 Chen, Rakhi, Hu, Xie, Cui, Alshareef (bib31) 2011; 11 Ma, Li, Li, Fan, Wu, Shi, Song (bib47) 2018; 456 Huang, Peng, Liu, Zhao, Chen, Yu (bib51) 2016; 8 Chen, Zhuo, Hu, Lai, Liu, Zhong, Peng (bib53) 2020; 30 Pantaleón, González-Benito (bib37) 2010; 31 Huang, Wu, Dai, Li (bib15) 2019; 55 Liu, Ma, Li, Zielinska, Kalenczuk, Chen, Chu, Tang, Mijowska (bib13) 2019; 412 Liu, Yang, Chen, Liu, Yang, Li (bib49) 2018; 397 Yang, Yan, Chen, Lee, Zheng (bib40) 2007; 86 Zhang, Jiang, Huang, Shen, Chen, Zhou, Cheng, Cheng, Wu, Li, Jiang, Yu (bib19) 2020 Wang, Cheng, Wang, Zang, Zhang, Han (bib27) 2019; 182 Li, Hu, Ding, Liang, Li, Yu, Wu, Chen, Yu (bib52) 2018; 57 Zhang, Yang, Yin, Wan, Guo (bib35) 2016; 28 Farma, Deraman, Awitdrus, Talib, Omar, Manjunatha, Ishak, Basri, Dolah (bib56) 2013; 8 Ammar, Mallek, Abdelkefi, Benjelloun-Mlayeh, Ei Gharbi (bib23) 2009; 11 Liu, Wang, Zheng, Luo, Cen (bib41) 2008; 82 Wu, Jiang, Long, Fan (bib6) 2015; 13 Huang, Hu, Huang, Zhu, Meng, Liu, Pei, Hao, Wang, Zhi (bib45) 2015; 9 Erfani Jazi, Narayanan, Aghabozorgi, Farajidizaji, Aghaei, Kamyabi, Navarathna, Mlsna (bib43) 2019; 1 Wang, Wu, Wang, Gao, Xu, Jiang (bib24) 2017; 363 Gong, Li, Luo, Fu, Pan (bib55) 2017; 19 Chang, Yu, Wang (bib38) 2015; 176 Guo, Li, Sun, Wang, Yang (bib21) 2017; 19 Li, Han, Qi, Teng, Li, Wang (bib14) 2019; 30 Du, Wang, Zhan, Sun, Kang, Jiang, Zhang, Shao, Dong, Liu, Murugadoss, Guo (bib4) 2019; 296 Chen, Yu, Zhao, Du, Tang, Sun, Sun, Besenbacher, Yu (bib12) 2016; 27 Farma, Deraman, Awitdrus, Talib, Taer, Basri, Manjunatha, Ishak, Dollah, Hashmi (bib57) 2013; 132 Wang, Liu, Tian, Sun, Huang, Wu, Li (bib3) 2020; 384 Xiong, Li, Lin, Liu, Xu, Mao, Duan, Li, Ni (bib9) 2019; 165 Norgren, Edlund (bib20) 2014; 19 Liu, Jiang, Yu (bib42) 2015; 17 Huang, Sumpter, Meunier (bib30) 2008; 14 Huang, Zhi (bib44) 2017; 50 Yin, Tian, Pang, Guo, Li, Pan (bib48) 2020; 156 Kshetri, Tran, Nguyen, Kim, Lau, Lee (bib2) 2020; 380 Li, Ren, Ai, Sun, Zhu, Liu, Liang, Peng, Si, Lou, Feng, Ci (bib36) 2018; 8 Han, Wang, Zhu, Huang, Yue, Mei, Xu, Xia (bib61) 2019; 11 Li, Li, Pang, Zhuang, Zhu, Tsiakaras, Shen (bib8) 2019; 324 Liang, Yu, Zhou, Wu, Ding, Lou (bib29) 2014; 53 Zhao, Zhang, Ren, Ran, Chen, Wu, Gao (bib5) 2015; 286 Del Ángel-Meraz, de Jesús Orantes-Flores, Morales, Sevilla-Camacho, Castillo-Palomera (bib33) 2020; 31 Sun, Xue, Dong, Zhang, An, Ding, Zhang, Dou, Zhang (bib50) 2020; 55 Wang, Yang, Stubbs, Li, He (bib59) 2013; 5 Wang, Shen, Wu, Gu (bib18) 2018; 20 Zhu, Yan, Zhang, Yang, Jiang, Zhang (bib22) 2020; 76 Monteil-Rivera, Phuong, Ye, Halasz, Hawari (bib39) 2013; 41 Sing (bib32) 1985; 57 Li, Wang, Wei, Fan, Yan (bib11) 2016; 19 Jarusuwannapoom, Hongrojjanawiwat, Jitjaicham, Wannatong, Nithitanakul, Pattamaprom, Koombhongse, Rangkupan, Supaphol (bib28) 2005; 41 Jiang, Lee, Li (bib16) 2013; 6 Zhang, Li, Qing, Lu, Wu, Yan, Yang (bib58) 2019; 123 Shi, Owusu, Xu, Zhu, Zhang, Yang, Mai (bib1) 2019; 15 Xiong (10.1016/j.carbon.2021.03.063_bib9) 2019; 165 Liu (10.1016/j.carbon.2021.03.063_bib13) 2019; 412 Dhinakaran (10.1016/j.carbon.2021.03.063_bib10) 2020; 27 Wang (10.1016/j.carbon.2021.03.063_bib3) 2020; 384 Wang (10.1016/j.carbon.2021.03.063_bib18) 2018; 20 Farma (10.1016/j.carbon.2021.03.063_bib57) 2013; 132 Zhang (10.1016/j.carbon.2021.03.063_bib19) 2020 Wang (10.1016/j.carbon.2021.03.063_bib27) 2019; 182 Yang (10.1016/j.carbon.2021.03.063_bib40) 2007; 86 Huang (10.1016/j.carbon.2021.03.063_bib30) 2008; 14 Erfani Jazi (10.1016/j.carbon.2021.03.063_bib43) 2019; 1 Liu (10.1016/j.carbon.2021.03.063_bib49) 2018; 397 Du (10.1016/j.carbon.2021.03.063_bib4) 2019; 296 Jarusuwannapoom (10.1016/j.carbon.2021.03.063_bib28) 2005; 41 Li (10.1016/j.carbon.2021.03.063_bib60) 2011; 49 Li (10.1016/j.carbon.2021.03.063_bib36) 2018; 8 Chen (10.1016/j.carbon.2021.03.063_bib31) 2011; 11 Chen (10.1016/j.carbon.2021.03.063_bib12) 2016; 27 Huang (10.1016/j.carbon.2021.03.063_bib44) 2017; 50 Sun (10.1016/j.carbon.2021.03.063_bib50) 2020; 55 Li (10.1016/j.carbon.2021.03.063_bib14) 2019; 30 Jacobs (10.1016/j.carbon.2021.03.063_bib26) 2010; 115 Li (10.1016/j.carbon.2021.03.063_bib8) 2019; 324 Farma (10.1016/j.carbon.2021.03.063_bib56) 2013; 8 Li (10.1016/j.carbon.2021.03.063_bib11) 2016; 19 Li (10.1016/j.carbon.2021.03.063_bib52) 2018; 57 Monteil-Rivera (10.1016/j.carbon.2021.03.063_bib39) 2013; 41 Chen (10.1016/j.carbon.2021.03.063_bib53) 2020; 30 Xiong (10.1016/j.carbon.2021.03.063_bib25) 2017; 5 Wang (10.1016/j.carbon.2021.03.063_bib7) 2013; 2 Wu (10.1016/j.carbon.2021.03.063_bib6) 2015; 13 Huang (10.1016/j.carbon.2021.03.063_bib51) 2016; 8 Liu (10.1016/j.carbon.2021.03.063_bib41) 2008; 82 Kshetri (10.1016/j.carbon.2021.03.063_bib2) 2020; 380 Jiang (10.1016/j.carbon.2021.03.063_bib16) 2013; 6 Wang (10.1016/j.carbon.2021.03.063_bib59) 2013; 5 Del Ángel-Meraz (10.1016/j.carbon.2021.03.063_bib33) 2020; 31 Liu (10.1016/j.carbon.2021.03.063_bib42) 2015; 17 Huang (10.1016/j.carbon.2021.03.063_bib15) 2019; 55 Zhu (10.1016/j.carbon.2021.03.063_bib22) 2020; 76 Gong (10.1016/j.carbon.2021.03.063_bib55) 2017; 19 Cheng (10.1016/j.carbon.2021.03.063_bib34) 2015; 15 Zhang (10.1016/j.carbon.2021.03.063_bib35) 2016; 28 Yin (10.1016/j.carbon.2021.03.063_bib48) 2020; 156 Ammar (10.1016/j.carbon.2021.03.063_bib23) 2009; 11 Zhang (10.1016/j.carbon.2021.03.063_bib58) 2019; 123 Huang (10.1016/j.carbon.2021.03.063_bib45) 2015; 9 Wang (10.1016/j.carbon.2021.03.063_bib24) 2017; 363 Han (10.1016/j.carbon.2021.03.063_bib61) 2019; 11 Norgren (10.1016/j.carbon.2021.03.063_bib20) 2014; 19 Chang (10.1016/j.carbon.2021.03.063_bib38) 2015; 176 Zhao (10.1016/j.carbon.2021.03.063_bib5) 2015; 286 Pantaleón (10.1016/j.carbon.2021.03.063_bib37) 2010; 31 Shi (10.1016/j.carbon.2021.03.063_bib1) 2019; 15 Han (10.1016/j.carbon.2021.03.063_bib62) 2019; 149 Guo (10.1016/j.carbon.2021.03.063_bib21) 2017; 19 Schlee (10.1016/j.carbon.2021.03.063_bib46) 2019; 145 Zhang (10.1016/j.carbon.2021.03.063_bib17) 2015; 8 Ma (10.1016/j.carbon.2021.03.063_bib47) 2018; 456 Sing (10.1016/j.carbon.2021.03.063_bib32) 1985; 57 Liang (10.1016/j.carbon.2021.03.063_bib29) 2014; 53 Wang (10.1016/j.carbon.2021.03.063_bib54) 2020; 404 |
References_xml | – volume: 8 start-page: 257 year: 2013 end-page: 273 ident: bib56 article-title: Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon publication-title: Int. J. Electrochem. Sci. – volume: 20 start-page: 5031 year: 2018 end-page: 5057 ident: bib18 article-title: State-of-the-art on the production and application of carbon nanomaterials from biomass publication-title: Green Chem. – volume: 14 start-page: 6614 year: 2008 end-page: 6626 ident: bib30 article-title: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes publication-title: Chemistry – volume: 363 start-page: 375 year: 2017 end-page: 383 ident: bib24 article-title: Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors publication-title: J. Power Sources – volume: 55 start-page: 5166 year: 2020 end-page: 5176 ident: bib50 article-title: Biomass-derived porous carbon electrodes for high-performance supercapacitors publication-title: J. Mater. Sci. – volume: 380 year: 2020 ident: bib2 article-title: Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor publication-title: Chem. Eng. J. – start-page: 753 year: 2020 end-page: 760 ident: bib19 article-title: Sustainable production of value-added carbon nanomaterials from biomass pyrolysis publication-title: Nature Sustainability – volume: 182 year: 2019 ident: bib27 article-title: Preparation of electrospun chitosan/poly(ethylene oxide) composite nanofibers reinforced with cellulose nanocrystals: structure, morphology, and mechanical behavior publication-title: Compos. Sci. Technol. – volume: 296 start-page: 907 year: 2019 end-page: 915 ident: bib4 article-title: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO publication-title: Electrochim. Acta – volume: 384 year: 2020 ident: bib3 article-title: Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors publication-title: Chem. Eng. J. – volume: 8 start-page: 15205 year: 2016 end-page: 15215 ident: bib51 article-title: Biobased nano porous active carbon fibers for high-performance supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 4766 year: 2015 end-page: 4775 ident: bib45 article-title: From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles publication-title: ACS Nano – volume: 8 start-page: 2114 year: 2015 end-page: 2122 ident: bib17 article-title: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method publication-title: ChemSusChem – volume: 19 start-page: 409 year: 2014 end-page: 416 ident: bib20 article-title: Lignin: recent advances and emerging applications publication-title: Curr. Opin. Colloid Interface Sci. – volume: 156 start-page: 988 year: 2020 end-page: 996 ident: bib48 article-title: Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor publication-title: Int. J. Biol. Macromol. – volume: 31 start-page: 7547 year: 2020 end-page: 7554 ident: bib33 article-title: The use of activated carbon from coffee endocarp for the manufacture of supercapacitors publication-title: J. Mater. Sci. Mater. Electron. – volume: 57 start-page: 7085 year: 2018 end-page: 7090 ident: bib52 article-title: Wood-derived ultrathin carbon nanofiber aerogels publication-title: Angew Chem. Int. Ed. Engl. – volume: 30 year: 2020 ident: bib53 article-title: Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage publication-title: Adv. Funct. Mater. – volume: 19 start-page: 4132 year: 2017 end-page: 4140 ident: bib55 article-title: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors publication-title: Green Chem. – volume: 17 start-page: 4888 year: 2015 end-page: 4907 ident: bib42 article-title: Thermochemical conversion of lignin to functional materials: a review and future directions publication-title: Green Chem. – volume: 11 start-page: 44624 year: 2019 end-page: 44635 ident: bib61 article-title: Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness publication-title: ACS Appl. Mater. Interfaces – volume: 145 start-page: 470 year: 2019 end-page: 480 ident: bib46 article-title: From waste to wealth: from Kraft lignin to free-standing supercapacitors publication-title: Carbon – volume: 15 start-page: 66 year: 2015 end-page: 74 ident: bib34 article-title: Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode publication-title: Nanomater. Energy – volume: 19 start-page: 2595 year: 2017 end-page: 2602 ident: bib21 article-title: Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities publication-title: Green Chem. – volume: 456 start-page: 568 year: 2018 end-page: 576 ident: bib47 article-title: Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors publication-title: Appl. Surf. Sci. – volume: 49 start-page: 1248 year: 2011 end-page: 1257 ident: bib60 article-title: Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor publication-title: Carbon – volume: 5 start-page: 2273 year: 2017 end-page: 2281 ident: bib25 article-title: Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly publication-title: ACS Sustain. Chem. Eng. – volume: 397 start-page: 1 year: 2018 end-page: 10 ident: bib49 article-title: Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors publication-title: J. Power Sources – volume: 286 start-page: 1 year: 2015 end-page: 9 ident: bib5 article-title: Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode publication-title: J. Power Sources – volume: 115 start-page: 3130 year: 2010 end-page: 3136 ident: bib26 article-title: The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers publication-title: J. Appl. Polym. Sci. – volume: 76 year: 2020 ident: bib22 article-title: A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors publication-title: Prog. Energy Combust. Sci. – volume: 28 start-page: 9539 year: 2016 end-page: 9544 ident: bib35 article-title: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries publication-title: Adv. Mater. – volume: 404 year: 2020 ident: bib54 article-title: Metal-organic framework-based materials for hybrid supercapacitor application publication-title: Coord. Chem. Rev. – volume: 2 start-page: 294 year: 2013 end-page: 303 ident: bib7 article-title: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors publication-title: Nanomater. Energy – volume: 41 start-page: 409 year: 2005 end-page: 421 ident: bib28 article-title: Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers publication-title: Eur. Polym. J. – volume: 55 start-page: 9168 year: 2019 end-page: 9171 ident: bib15 article-title: 3D honeycomb-like carbon foam synthesized with biomass buckwheat flour for high-performance supercapacitor electrodes publication-title: Chem. Commun. – volume: 27 start-page: 377 year: 2016 end-page: 389 ident: bib12 article-title: Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors publication-title: Nanomater. Energy – volume: 57 start-page: 603 year: 1985 end-page: 619 ident: bib32 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) publication-title: Pure Appl. Chem. – volume: 13 start-page: 527 year: 2015 end-page: 536 ident: bib6 article-title: From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors publication-title: Nanomater. Energy – volume: 123 start-page: 23374 year: 2019 end-page: 23381 ident: bib58 article-title: Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor publication-title: J. Phys. Chem. C – volume: 15 year: 2019 ident: bib1 article-title: 1D carbon-based nanocomposites for electrochemical energy storage publication-title: Small – volume: 30 start-page: 19415 year: 2019 end-page: 19425 ident: bib14 article-title: Biomass-derived 3D hierarchical porous carbon by two-step activation method for supercapacitor publication-title: J. Mater. Sci. Mater. Electron. – volume: 176 start-page: 1352 year: 2015 end-page: 1357 ident: bib38 article-title: Influence of H publication-title: Electrochim. Acta – volume: 86 start-page: 1781 year: 2007 end-page: 1788 ident: bib40 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel – volume: 149 start-page: 1 year: 2019 end-page: 18 ident: bib62 article-title: A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network publication-title: Carbon – volume: 53 start-page: 12803 year: 2014 end-page: 12807 ident: bib29 article-title: Bowl-like SnO publication-title: Angew Chem. Int. Ed. Engl. – volume: 412 start-page: 1 year: 2019 end-page: 9 ident: bib13 article-title: Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors publication-title: J. Power Sources – volume: 11 start-page: 5165 year: 2011 end-page: 5172 ident: bib31 article-title: High-performance nanostructured supercapacitors on a sponge publication-title: Nano Lett. – volume: 19 start-page: 165 year: 2016 end-page: 175 ident: bib11 article-title: Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors publication-title: Nanomater. Energy – volume: 324 year: 2019 ident: bib8 article-title: Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors publication-title: Electrochim. Acta – volume: 1 year: 2019 ident: bib43 article-title: Structure, chemistry and physicochemistry of lignin for material functionalization publication-title: SN Applied Sciences – volume: 41 start-page: 356 year: 2013 end-page: 364 ident: bib39 article-title: Isolation and characterization of herbaceous lignins for applications in biomaterials publication-title: Ind. Crop. Prod. – volume: 165 start-page: 10 year: 2019 end-page: 46 ident: bib9 article-title: The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor publication-title: Compos. B Eng. – volume: 5 start-page: 12275 year: 2013 end-page: 12282 ident: bib59 article-title: Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 69 year: 2009 end-page: 75 ident: bib23 article-title: Separating, characterization and application of alfa grass (stipa tenacissima) chemical components 1. Pulping of alfa grass with formic acid/acetic acid mixture publication-title: Journal de la Société Chimique de Tunisie – volume: 27 start-page: 824 year: 2020 end-page: 828 ident: bib10 article-title: Review on exploration of graphene in diverse applications and its future horizon publication-title: Mater. Today: Proceedings – volume: 50 year: 2017 ident: bib44 article-title: Functional flexible and wearable supercapacitors publication-title: J. Phys. Appl. Phys. – volume: 6 start-page: 41 year: 2013 end-page: 53 ident: bib16 article-title: 3D carbon based nanostructures for advanced supercapacitors publication-title: Energy Environ. Sci. – volume: 31 start-page: 1585 year: 2010 end-page: 1592 ident: bib37 article-title: Structure and thermostability of PMMA in PMMA/silica nanocomposites: effect of high-energy ball milling and the amount of the nanofiller publication-title: Polym. Compos. – volume: 82 start-page: 170 year: 2008 end-page: 177 ident: bib41 article-title: Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis publication-title: J. Anal. Appl. Pyrol. – volume: 132 start-page: 254 year: 2013 end-page: 261 ident: bib57 article-title: Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors publication-title: Bioresour. Technol. – volume: 8 year: 2018 ident: bib36 article-title: Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries publication-title: Adv. Energy Mater. – volume: 456 start-page: 568 year: 2018 ident: 10.1016/j.carbon.2021.03.063_bib47 article-title: Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.189 – volume: 19 start-page: 165 year: 2016 ident: 10.1016/j.carbon.2021.03.063_bib11 article-title: Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2015.10.038 – volume: 8 start-page: 15205 year: 2016 ident: 10.1016/j.carbon.2021.03.063_bib51 article-title: Biobased nano porous active carbon fibers for high-performance supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02214 – volume: 57 start-page: 603 issue: 4 year: 1985 ident: 10.1016/j.carbon.2021.03.063_bib32 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) publication-title: Pure Appl. Chem. doi: 10.1351/pac198557040603 – volume: 31 start-page: 7547 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib33 article-title: The use of activated carbon from coffee endocarp for the manufacture of supercapacitors publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-03123-1 – volume: 49 start-page: 1248 year: 2011 ident: 10.1016/j.carbon.2021.03.063_bib60 article-title: Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor publication-title: Carbon doi: 10.1016/j.carbon.2010.11.043 – volume: 20 start-page: 5031 year: 2018 ident: 10.1016/j.carbon.2021.03.063_bib18 article-title: State-of-the-art on the production and application of carbon nanomaterials from biomass publication-title: Green Chem. doi: 10.1039/C8GC01748D – volume: 132 start-page: 254 year: 2013 ident: 10.1016/j.carbon.2021.03.063_bib57 article-title: Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.01.044 – volume: 404 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib54 article-title: Metal-organic framework-based materials for hybrid supercapacitor application publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213093 – volume: 149 start-page: 1 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib62 article-title: A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network publication-title: Carbon doi: 10.1016/j.carbon.2019.04.029 – volume: 31 start-page: 1585 year: 2010 ident: 10.1016/j.carbon.2021.03.063_bib37 article-title: Structure and thermostability of PMMA in PMMA/silica nanocomposites: effect of high-energy ball milling and the amount of the nanofiller publication-title: Polym. Compos. doi: 10.1002/pc.20946 – volume: 19 start-page: 2595 year: 2017 ident: 10.1016/j.carbon.2021.03.063_bib21 article-title: Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities publication-title: Green Chem. doi: 10.1039/C7GC00506G – volume: 50 year: 2017 ident: 10.1016/j.carbon.2021.03.063_bib44 article-title: Functional flexible and wearable supercapacitors publication-title: J. Phys. Appl. Phys. – volume: 156 start-page: 988 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib48 article-title: Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.04.102 – volume: 5 start-page: 2273 year: 2017 ident: 10.1016/j.carbon.2021.03.063_bib25 article-title: Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02585 – volume: 41 start-page: 409 year: 2005 ident: 10.1016/j.carbon.2021.03.063_bib28 article-title: Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2004.10.010 – volume: 30 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib53 article-title: Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage publication-title: Adv. Funct. Mater. – volume: 19 start-page: 409 year: 2014 ident: 10.1016/j.carbon.2021.03.063_bib20 article-title: Lignin: recent advances and emerging applications publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2014.08.004 – volume: 82 start-page: 170 year: 2008 ident: 10.1016/j.carbon.2021.03.063_bib41 article-title: Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2008.03.007 – volume: 123 start-page: 23374 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib58 article-title: Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b06058 – volume: 115 start-page: 3130 year: 2010 ident: 10.1016/j.carbon.2021.03.063_bib26 article-title: The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.31396 – volume: 11 start-page: 69 year: 2009 ident: 10.1016/j.carbon.2021.03.063_bib23 article-title: Separating, characterization and application of alfa grass (stipa tenacissima) chemical components 1. Pulping of alfa grass with formic acid/acetic acid mixture publication-title: Journal de la Société Chimique de Tunisie – volume: 8 year: 2018 ident: 10.1016/j.carbon.2021.03.063_bib36 article-title: Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802386 – volume: 13 start-page: 527 year: 2015 ident: 10.1016/j.carbon.2021.03.063_bib6 article-title: From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2015.03.013 – volume: 384 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib3 article-title: Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123263 – volume: 11 start-page: 44624 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib61 article-title: Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16458 – volume: 380 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib2 article-title: Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122543 – volume: 14 start-page: 6614 year: 2008 ident: 10.1016/j.carbon.2021.03.063_bib30 article-title: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes publication-title: Chemistry doi: 10.1002/chem.200800639 – volume: 8 start-page: 2114 year: 2015 ident: 10.1016/j.carbon.2021.03.063_bib17 article-title: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method publication-title: ChemSusChem doi: 10.1002/cssc.201403486 – volume: 145 start-page: 470 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib46 article-title: From waste to wealth: from Kraft lignin to free-standing supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2019.01.035 – volume: 2 start-page: 294 year: 2013 ident: 10.1016/j.carbon.2021.03.063_bib7 article-title: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2012.10.001 – volume: 53 start-page: 12803 year: 2014 ident: 10.1016/j.carbon.2021.03.063_bib29 article-title: Bowl-like SnO2 @carbon hollow particles as an advanced anode material for lithium-ion batteries publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201407917 – volume: 27 start-page: 824 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib10 article-title: Review on exploration of graphene in diverse applications and its future horizon publication-title: Mater. Today: Proceedings – volume: 182 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib27 article-title: Preparation of electrospun chitosan/poly(ethylene oxide) composite nanofibers reinforced with cellulose nanocrystals: structure, morphology, and mechanical behavior publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107774 – volume: 15 start-page: 66 year: 2015 ident: 10.1016/j.carbon.2021.03.063_bib34 article-title: Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2015.04.007 – volume: 55 start-page: 9168 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib15 article-title: 3D honeycomb-like carbon foam synthesized with biomass buckwheat flour for high-performance supercapacitor electrodes publication-title: Chem. Commun. doi: 10.1039/C9CC03039E – volume: 27 start-page: 377 year: 2016 ident: 10.1016/j.carbon.2021.03.063_bib12 article-title: Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2016.07.020 – volume: 324 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib8 article-title: Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134878 – volume: 11 start-page: 5165 year: 2011 ident: 10.1016/j.carbon.2021.03.063_bib31 article-title: High-performance nanostructured supercapacitors on a sponge publication-title: Nano Lett. doi: 10.1021/nl2023433 – volume: 15 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib1 article-title: 1D carbon-based nanocomposites for electrochemical energy storage publication-title: Small doi: 10.1002/smll.201902348 – volume: 76 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib22 article-title: A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.100788 – volume: 296 start-page: 907 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib4 article-title: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.074 – volume: 412 start-page: 1 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib13 article-title: Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.032 – volume: 41 start-page: 356 year: 2013 ident: 10.1016/j.carbon.2021.03.063_bib39 article-title: Isolation and characterization of herbaceous lignins for applications in biomaterials publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2012.04.049 – volume: 286 start-page: 1 year: 2015 ident: 10.1016/j.carbon.2021.03.063_bib5 article-title: Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.141 – volume: 165 start-page: 10 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib9 article-title: The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.11.085 – volume: 363 start-page: 375 year: 2017 ident: 10.1016/j.carbon.2021.03.063_bib24 article-title: Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.097 – volume: 8 start-page: 257 year: 2013 ident: 10.1016/j.carbon.2021.03.063_bib56 article-title: Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)14018-1 – volume: 1 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib43 article-title: Structure, chemistry and physicochemistry of lignin for material functionalization publication-title: SN Applied Sciences doi: 10.1007/s42452-019-1126-8 – volume: 19 start-page: 4132 year: 2017 ident: 10.1016/j.carbon.2021.03.063_bib55 article-title: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors publication-title: Green Chem. doi: 10.1039/C7GC01681F – volume: 57 start-page: 7085 year: 2018 ident: 10.1016/j.carbon.2021.03.063_bib52 article-title: Wood-derived ultrathin carbon nanofiber aerogels publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201802753 – start-page: 753 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib19 article-title: Sustainable production of value-added carbon nanomaterials from biomass pyrolysis publication-title: Nature Sustainability doi: 10.1038/s41893-020-0538-1 – volume: 5 start-page: 12275 year: 2013 ident: 10.1016/j.carbon.2021.03.063_bib59 article-title: Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4043867 – volume: 6 start-page: 41 year: 2013 ident: 10.1016/j.carbon.2021.03.063_bib16 article-title: 3D carbon based nanostructures for advanced supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23284G – volume: 55 start-page: 5166 year: 2020 ident: 10.1016/j.carbon.2021.03.063_bib50 article-title: Biomass-derived porous carbon electrodes for high-performance supercapacitors publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-04343-5 – volume: 28 start-page: 9539 year: 2016 ident: 10.1016/j.carbon.2021.03.063_bib35 article-title: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201602913 – volume: 86 start-page: 1781 year: 2007 ident: 10.1016/j.carbon.2021.03.063_bib40 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – volume: 176 start-page: 1352 year: 2015 ident: 10.1016/j.carbon.2021.03.063_bib38 article-title: Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.07.076 – volume: 17 start-page: 4888 year: 2015 ident: 10.1016/j.carbon.2021.03.063_bib42 article-title: Thermochemical conversion of lignin to functional materials: a review and future directions publication-title: Green Chem. doi: 10.1039/C5GC01054C – volume: 397 start-page: 1 year: 2018 ident: 10.1016/j.carbon.2021.03.063_bib49 article-title: Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.100 – volume: 30 start-page: 19415 year: 2019 ident: 10.1016/j.carbon.2021.03.063_bib14 article-title: Biomass-derived 3D hierarchical porous carbon by two-step activation method for supercapacitor publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-02303-y – volume: 9 start-page: 4766 year: 2015 ident: 10.1016/j.carbon.2021.03.063_bib45 article-title: From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles publication-title: ACS Nano doi: 10.1021/acsnano.5b00860 |
SSID | ssj0004814 |
Score | 2.5752754 |
Snippet | Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 68 |
SubjectTerms | Aqueous electrolytes Biomass Biomass-derived lignin Capacitance Carbon Carbonization electric potential difference electrochemical capacitors electrodes Electrospraying Functional materials Graphitization Honeycomb-like multilayered carbon Lignin macropores microparticles micropores Microspheres Microstructure One-step carbonization Polymethyl methacrylate Pore size porosity Porous materials renewable energy sources Structural hierarchy Supercapacitors |
Title | A novel strategy combining electrospraying and one-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin |
URI | https://dx.doi.org/10.1016/j.carbon.2021.03.063 https://www.proquest.com/docview/2549019065 https://www.proquest.com/docview/2551973142 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhObSXkvRBt3mgQq9qpJUse4_LkrBpaU4N5CZsSyLbGtvsI7CX_pz8zsxIckICIdCLwdbDkmYsfbLmmyHk24Rb4bysGCiIZqrynFVSOLgoUQuvrAxxyH5d6vmV-nGdXe-Q2cCFQbPKNPfHOT3M1unJaRrN036xQI4vwvExklC4zHMk_CqVo5Z___do5qGK6N8bj_kx90CfCzZedbmsOvSCOhbB1amWLy1PzybqsPqc75N3CTbSaWzZAdlx7XvyZjZEa_tA7qa07W5dQ1fR3eyWQo-qEP2BplA3q35ZIqmJlq2lXesYCLinsXGJjUkBwlKAhLRfuugUHJ51nm6a8EME9vH0BkpusW7WLP46GgwSm3KLIT9TXRQpKxR5_QDMmQUVv4U0KA2N-Uiuzs9-z-YsxWBgtZJyzca1yHyRlYW1JYBFZXOlszy30hXeQYoDBGiLiVXoic_lsuJWa19mUgurnBfyE9ltoWGfCZ0oXnPti5pzp_B8FpBd4bUTvC5w0RwROQy9qZODcoyT0ZjBEu2Pif0wKDDDpQGBjQh7KNVHBx2v5M8HqZonimZgDXml5NGgBCZ96CuD-2uk4-tsRL4-JIPs8dylbF23wTzIDpZCjb_898sPyVu8i4bCR2R3vdy4Y4BD6-ok6PsJ2Zte_Jxf3gNXnQ3E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBXp5pBeSj_pJmmrQq8i0kqWtcdladg0yZ4SyE3YlkS3NbbZj8D-of7OzFhySgsl0IsPlseWPWPp2Zr3hpAvU-6ED7JkECCaqTJwVkrhYaNEJYJysq9Ddr3Ui1v17S67OyDzgQuDaZVp7I9jej9apz1n6WmedasVcnwRjk-QhMJlnptn5BDVqbIROZxdXC6Wv-mRJkp840o_GgwMuj7NqyrWZYtCqBPRq51q-a8Z6q-xup-Azl-SFwk50lns3Cty4JvX5Gg-FGx7Q37NaNPe-5puouLsnsJNlX0BCJqq3Wy6dYG8Jlo0jraNZ-DjjsbOJUImBRRLARXSbu2jLjjsawPd1f0_EfiUp9_Bco_nZvXqp6d9TmJd7LHqZzoXRdYKRWo_YHPmIMrvoQ2soTNvye3515v5gqUyDKxSUm7ZpBJZMFlhnCsALyqXK53luZPeBA8tHkCgM1OnUIzP57LkTutQZFILp3wQ8h0ZNdCx94ROFa-4Dqbi3CtcogVwZ4L2glcG580xkcOjt1XSKMdSGbUdktF-2HgfFh1mubTgsDFhj1Zd1Oh44vh88Kr9I9YsTCNPWJ4OQWDTu76x-ImNjHydjcnnx2bwPS69FI1vd3gMEoSlUJPj_774J3K0uLm-slcXy8sT8hxbYt7wKRlt1zv_AdDRtvyYov8BgNQQdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+strategy+combining+electrospraying+and+one-step+carbonization+for+the+preparation+of+ultralight+honeycomb-like+multilayered+carbon+from+biomass-derived+lignin&rft.jtitle=Carbon+%28New+York%29&rft.au=Cao%2C+Meilian&rft.au=Wang%2C+Qingxiang&rft.au=Cheng%2C+Wanli&rft.au=Huan%2C+Siqi&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=179&rft.spage=68&rft_id=info:doi/10.1016%2Fj.carbon.2021.03.063&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |