A novel strategy combining electrospraying and one-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin

Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study,...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 179; pp. 68 - 79
Main Authors Cao, Meilian, Wang, Qingxiang, Cheng, Wanli, Huan, Siqi, Hu, Yi, Niu, Zhaoxuan, Han, Guangping, Cheng, Haitao, Wang, Ge
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g−1 at 0.5 A g−1 in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products. [Display omitted] •A strategy combining electrospraying and carbonization to get carbon was developed.•The synthesized ultralight carbon possessed honeycomb-like multilayered structure.•The obtained carbon had partially graphitized structure and hierarchical pore system.•The prepared carbon as electrode exhibited excellent electrochemical performance.
AbstractList Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g⁻¹ at 0.5 A g⁻¹ in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products.
Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g−1 at 0.5 A g−1 in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products. [Display omitted] •A strategy combining electrospraying and carbonization to get carbon was developed.•The synthesized ultralight carbon possessed honeycomb-like multilayered structure.•The obtained carbon had partially graphitized structure and hierarchical pore system.•The prepared carbon as electrode exhibited excellent electrochemical performance.
Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g−1 at 0.5 A g−1 in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products.
Author Huan, Siqi
Cheng, Wanli
Wang, Ge
Hu, Yi
Cheng, Haitao
Han, Guangping
Cao, Meilian
Wang, Qingxiang
Niu, Zhaoxuan
Author_xml – sequence: 1
  givenname: Meilian
  surname: Cao
  fullname: Cao, Meilian
  organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China
– sequence: 2
  givenname: Qingxiang
  surname: Wang
  fullname: Wang, Qingxiang
  organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China
– sequence: 3
  givenname: Wanli
  surname: Cheng
  fullname: Cheng, Wanli
  organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China
– sequence: 4
  givenname: Siqi
  surname: Huan
  fullname: Huan, Siqi
  organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China
– sequence: 5
  givenname: Yi
  surname: Hu
  fullname: Hu, Yi
  organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China
– sequence: 6
  givenname: Zhaoxuan
  surname: Niu
  fullname: Niu, Zhaoxuan
  organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China
– sequence: 7
  givenname: Guangping
  orcidid: 0000-0001-5434-4878
  surname: Han
  fullname: Han, Guangping
  email: guangping.han@nefu.edu.cn
  organization: Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education, Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, China
– sequence: 8
  givenname: Haitao
  surname: Cheng
  fullname: Cheng, Haitao
  organization: International Centre for Bamboo and Rattan, Beijing, 100102, China
– sequence: 9
  givenname: Ge
  surname: Wang
  fullname: Wang, Ge
  email: wangge@icbr.ac.cn
  organization: International Centre for Bamboo and Rattan, Beijing, 100102, China
BookMark eNqFUctuFDEQtFAisQn8AQdLXLjMYI_nyQEpikJAisSFnC2v3bPrxWMPtnel4YP4TnozOeUAJ6u7q6rbVVfkwgcPhLzjrOSMtx8PpVZxG3xZsYqXTJSsFa_IhvedKEQ_8AuyYYz1RVtV4jW5SumAZd3zekP-3FAfTuBoylFl2C1Uh2lrvfU7Cg50jiHNUS3nWnlDcXGRMsx03Wh_q2yDp2OINO-BzhFmFddeGOnRoaqzu32me2QuZ-3C2Z9AJxxZpxaIYJ616BjDRLc2TCqlwkC0J5whG495Qy5H5RK8fX6vyeOXux-3X4uH7_ffbm8eCl0LkYtK82bsG9Ubo7gYatPVbdN1RkA_Ak6g4YPpB4NdNkAntsy07aga0XJTw8jFNfmw6s4x_DpCynKySYNzykM4Jlk1qNAJXlcIff8CegjH6PE6RNUD4wNrG0TVK0qjkSnCKOdoJxUXyZk8hycPcv2-PIcnmZAYHtI-vaBpm59sRUOt-x_580oGdOpkIcqkLXgNxkZMVJpg_y3wF5gzvng
CitedBy_id crossref_primary_10_1016_j_cjche_2022_04_020
crossref_primary_10_1016_j_est_2022_106595
crossref_primary_10_1002_jsfa_12846
crossref_primary_10_1016_j_jiec_2022_02_030
crossref_primary_10_1016_j_fuel_2024_133707
crossref_primary_10_1149_2162_8777_ad76d8
crossref_primary_10_1016_j_cej_2021_134099
crossref_primary_10_1016_j_jpowsour_2024_234216
crossref_primary_10_1021_acsami_1c21009
crossref_primary_10_1016_j_est_2023_106671
crossref_primary_10_1016_j_jpcs_2023_111509
crossref_primary_10_1007_s11837_022_05667_5
crossref_primary_10_1016_j_cej_2023_148176
crossref_primary_10_59761_RCR5082
crossref_primary_10_1016_j_matlet_2022_133194
crossref_primary_10_1016_j_diamond_2024_111866
crossref_primary_10_1016_j_cej_2024_154829
crossref_primary_10_1007_s11664_023_10223_1
crossref_primary_10_1016_j_carbon_2022_01_043
crossref_primary_10_1021_acsaem_4c01294
crossref_primary_10_1016_j_resconrec_2024_107905
crossref_primary_10_1021_acsami_1c16532
crossref_primary_10_3390_nano13111744
crossref_primary_10_1016_j_est_2023_110362
crossref_primary_10_1016_j_jechem_2022_05_006
crossref_primary_10_1007_s10934_022_01300_7
crossref_primary_10_3390_ma15238335
crossref_primary_10_3390_c9040109
crossref_primary_10_1007_s44246_022_00009_1
crossref_primary_10_3389_fbael_2024_1422400
crossref_primary_10_1016_j_apsusc_2022_155080
crossref_primary_10_1016_j_mtcomm_2022_104911
crossref_primary_10_1016_j_electacta_2023_142410
crossref_primary_10_1016_j_carbpol_2021_119049
crossref_primary_10_1016_j_chemosphere_2022_135840
crossref_primary_10_1016_j_jelechem_2024_118423
crossref_primary_10_1016_j_jece_2022_108851
crossref_primary_10_1016_j_cej_2025_159219
crossref_primary_10_1016_j_colsurfa_2022_130728
crossref_primary_10_1016_j_est_2023_108633
crossref_primary_10_1016_j_carbon_2023_02_060
crossref_primary_10_1016_j_est_2022_104910
crossref_primary_10_1016_j_est_2022_105448
crossref_primary_10_1016_j_eng_2021_12_017
crossref_primary_10_1002_aesr_202200152
crossref_primary_10_1016_j_cej_2023_143574
crossref_primary_10_1016_j_gee_2022_01_002
crossref_primary_10_1016_j_colsurfa_2024_133292
crossref_primary_10_1021_acs_langmuir_3c00627
crossref_primary_10_1007_s42773_024_00316_3
crossref_primary_10_1016_j_est_2024_113271
crossref_primary_10_1016_j_indcrop_2023_117342
crossref_primary_10_1016_j_diamond_2022_109165
crossref_primary_10_1016_j_diamond_2023_110528
crossref_primary_10_1016_j_est_2024_115170
crossref_primary_10_2139_ssrn_4142020
crossref_primary_10_1016_j_apsusc_2021_151888
Cites_doi 10.1016/j.apsusc.2018.06.189
10.1016/j.nanoen.2015.10.038
10.1021/acsami.6b02214
10.1351/pac198557040603
10.1007/s10854-020-03123-1
10.1016/j.carbon.2010.11.043
10.1039/C8GC01748D
10.1016/j.biortech.2013.01.044
10.1016/j.ccr.2019.213093
10.1016/j.carbon.2019.04.029
10.1002/pc.20946
10.1039/C7GC00506G
10.1016/j.ijbiomac.2020.04.102
10.1021/acssuschemeng.6b02585
10.1016/j.eurpolymj.2004.10.010
10.1016/j.cocis.2014.08.004
10.1016/j.jaap.2008.03.007
10.1021/acs.jpcc.9b06058
10.1002/app.31396
10.1002/aenm.201802386
10.1016/j.nanoen.2015.03.013
10.1016/j.cej.2019.123263
10.1021/acsami.9b16458
10.1016/j.cej.2019.122543
10.1002/chem.200800639
10.1002/cssc.201403486
10.1016/j.carbon.2019.01.035
10.1016/j.nanoen.2012.10.001
10.1002/anie.201407917
10.1016/j.compscitech.2019.107774
10.1016/j.nanoen.2015.04.007
10.1039/C9CC03039E
10.1016/j.nanoen.2016.07.020
10.1016/j.electacta.2019.134878
10.1021/nl2023433
10.1002/smll.201902348
10.1016/j.pecs.2019.100788
10.1016/j.electacta.2018.11.074
10.1016/j.jpowsour.2018.11.032
10.1016/j.indcrop.2012.04.049
10.1016/j.jpowsour.2015.03.141
10.1016/j.compositesb.2018.11.085
10.1016/j.jpowsour.2017.07.097
10.1016/S1452-3981(23)14018-1
10.1007/s42452-019-1126-8
10.1039/C7GC01681F
10.1002/anie.201802753
10.1038/s41893-020-0538-1
10.1021/am4043867
10.1039/C2EE23284G
10.1007/s10853-019-04343-5
10.1002/adma.201602913
10.1016/j.fuel.2006.12.013
10.1016/j.electacta.2015.07.076
10.1039/C5GC01054C
10.1016/j.jpowsour.2018.06.100
10.1007/s10854-019-02303-y
10.1021/acsnano.5b00860
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2021.03.063
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 79
ExternalDocumentID 10_1016_j_carbon_2021_03_063
S0008622321003778
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c433t-2c15f85a8dda1394d746577d3e8fe5f8e519d89d46509e73b0d66fa5361d4ef13
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 05:34:58 EDT 2025
Mon Jul 14 08:16:42 EDT 2025
Thu Apr 24 22:59:00 EDT 2025
Tue Aug 05 03:08:29 EDT 2025
Fri Feb 23 02:41:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercapacitors
Electrospraying
One-step carbonization
Honeycomb-like multilayered carbon
Biomass-derived lignin
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-2c15f85a8dda1394d746577d3e8fe5f8e519d89d46509e73b0d66fa5361d4ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5434-4878
PQID 2549019065
PQPubID 2045273
PageCount 12
ParticipantIDs proquest_miscellaneous_2551973142
proquest_journals_2549019065
crossref_primary_10_1016_j_carbon_2021_03_063
crossref_citationtrail_10_1016_j_carbon_2021_03_063
elsevier_sciencedirect_doi_10_1016_j_carbon_2021_03_063
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Dhinakaran, Lavanya, Vigneswari, Ravichandran, Vijayakumar (bib10) 2020; 27
Schlee, Hosseinaei, Baker, Landmér, Tomani, Mostazo-López, Cazorla-Amorós, Herou, Titirici (bib46) 2019; 145
Li, Jiang, Dou, Wu, Huang, Feng, Yang, Yu, Zhao (bib60) 2011; 49
Wang, Guo, Penchev, Ruiz, Bozhilov, Yan, Ozkan, Ozkan (bib7) 2013; 2
Jacobs, Anandjiwala, Maaza (bib26) 2010; 115
Cheng, Huang, Xiao, Yao, Yuan, Li, Hu, Wang, Wan, Zhou (bib34) 2015; 15
Han, Wang, Yue, Mei, Chen, Huang, Wu, Xu (bib62) 2019; 149
Xiong, Han, Wang, Li, Qin, Chen, Chu (bib25) 2017; 5
Zhang, Lin, Lin, Yin, Lu, Liu, Zhao (bib17) 2015; 8
Wang, Liang, Gao, Qu, Zou (bib54) 2020; 404
Chen, Rakhi, Hu, Xie, Cui, Alshareef (bib31) 2011; 11
Ma, Li, Li, Fan, Wu, Shi, Song (bib47) 2018; 456
Huang, Peng, Liu, Zhao, Chen, Yu (bib51) 2016; 8
Chen, Zhuo, Hu, Lai, Liu, Zhong, Peng (bib53) 2020; 30
Pantaleón, González-Benito (bib37) 2010; 31
Huang, Wu, Dai, Li (bib15) 2019; 55
Liu, Ma, Li, Zielinska, Kalenczuk, Chen, Chu, Tang, Mijowska (bib13) 2019; 412
Liu, Yang, Chen, Liu, Yang, Li (bib49) 2018; 397
Yang, Yan, Chen, Lee, Zheng (bib40) 2007; 86
Zhang, Jiang, Huang, Shen, Chen, Zhou, Cheng, Cheng, Wu, Li, Jiang, Yu (bib19) 2020
Wang, Cheng, Wang, Zang, Zhang, Han (bib27) 2019; 182
Li, Hu, Ding, Liang, Li, Yu, Wu, Chen, Yu (bib52) 2018; 57
Zhang, Yang, Yin, Wan, Guo (bib35) 2016; 28
Farma, Deraman, Awitdrus, Talib, Omar, Manjunatha, Ishak, Basri, Dolah (bib56) 2013; 8
Ammar, Mallek, Abdelkefi, Benjelloun-Mlayeh, Ei Gharbi (bib23) 2009; 11
Liu, Wang, Zheng, Luo, Cen (bib41) 2008; 82
Wu, Jiang, Long, Fan (bib6) 2015; 13
Huang, Hu, Huang, Zhu, Meng, Liu, Pei, Hao, Wang, Zhi (bib45) 2015; 9
Erfani Jazi, Narayanan, Aghabozorgi, Farajidizaji, Aghaei, Kamyabi, Navarathna, Mlsna (bib43) 2019; 1
Wang, Wu, Wang, Gao, Xu, Jiang (bib24) 2017; 363
Gong, Li, Luo, Fu, Pan (bib55) 2017; 19
Chang, Yu, Wang (bib38) 2015; 176
Guo, Li, Sun, Wang, Yang (bib21) 2017; 19
Li, Han, Qi, Teng, Li, Wang (bib14) 2019; 30
Du, Wang, Zhan, Sun, Kang, Jiang, Zhang, Shao, Dong, Liu, Murugadoss, Guo (bib4) 2019; 296
Chen, Yu, Zhao, Du, Tang, Sun, Sun, Besenbacher, Yu (bib12) 2016; 27
Farma, Deraman, Awitdrus, Talib, Taer, Basri, Manjunatha, Ishak, Dollah, Hashmi (bib57) 2013; 132
Wang, Liu, Tian, Sun, Huang, Wu, Li (bib3) 2020; 384
Xiong, Li, Lin, Liu, Xu, Mao, Duan, Li, Ni (bib9) 2019; 165
Norgren, Edlund (bib20) 2014; 19
Liu, Jiang, Yu (bib42) 2015; 17
Huang, Sumpter, Meunier (bib30) 2008; 14
Huang, Zhi (bib44) 2017; 50
Yin, Tian, Pang, Guo, Li, Pan (bib48) 2020; 156
Kshetri, Tran, Nguyen, Kim, Lau, Lee (bib2) 2020; 380
Li, Ren, Ai, Sun, Zhu, Liu, Liang, Peng, Si, Lou, Feng, Ci (bib36) 2018; 8
Han, Wang, Zhu, Huang, Yue, Mei, Xu, Xia (bib61) 2019; 11
Li, Li, Pang, Zhuang, Zhu, Tsiakaras, Shen (bib8) 2019; 324
Liang, Yu, Zhou, Wu, Ding, Lou (bib29) 2014; 53
Zhao, Zhang, Ren, Ran, Chen, Wu, Gao (bib5) 2015; 286
Del Ángel-Meraz, de Jesús Orantes-Flores, Morales, Sevilla-Camacho, Castillo-Palomera (bib33) 2020; 31
Sun, Xue, Dong, Zhang, An, Ding, Zhang, Dou, Zhang (bib50) 2020; 55
Wang, Yang, Stubbs, Li, He (bib59) 2013; 5
Wang, Shen, Wu, Gu (bib18) 2018; 20
Zhu, Yan, Zhang, Yang, Jiang, Zhang (bib22) 2020; 76
Monteil-Rivera, Phuong, Ye, Halasz, Hawari (bib39) 2013; 41
Sing (bib32) 1985; 57
Li, Wang, Wei, Fan, Yan (bib11) 2016; 19
Jarusuwannapoom, Hongrojjanawiwat, Jitjaicham, Wannatong, Nithitanakul, Pattamaprom, Koombhongse, Rangkupan, Supaphol (bib28) 2005; 41
Jiang, Lee, Li (bib16) 2013; 6
Zhang, Li, Qing, Lu, Wu, Yan, Yang (bib58) 2019; 123
Shi, Owusu, Xu, Zhu, Zhang, Yang, Mai (bib1) 2019; 15
Xiong (10.1016/j.carbon.2021.03.063_bib9) 2019; 165
Liu (10.1016/j.carbon.2021.03.063_bib13) 2019; 412
Dhinakaran (10.1016/j.carbon.2021.03.063_bib10) 2020; 27
Wang (10.1016/j.carbon.2021.03.063_bib3) 2020; 384
Wang (10.1016/j.carbon.2021.03.063_bib18) 2018; 20
Farma (10.1016/j.carbon.2021.03.063_bib57) 2013; 132
Zhang (10.1016/j.carbon.2021.03.063_bib19) 2020
Wang (10.1016/j.carbon.2021.03.063_bib27) 2019; 182
Yang (10.1016/j.carbon.2021.03.063_bib40) 2007; 86
Huang (10.1016/j.carbon.2021.03.063_bib30) 2008; 14
Erfani Jazi (10.1016/j.carbon.2021.03.063_bib43) 2019; 1
Liu (10.1016/j.carbon.2021.03.063_bib49) 2018; 397
Du (10.1016/j.carbon.2021.03.063_bib4) 2019; 296
Jarusuwannapoom (10.1016/j.carbon.2021.03.063_bib28) 2005; 41
Li (10.1016/j.carbon.2021.03.063_bib60) 2011; 49
Li (10.1016/j.carbon.2021.03.063_bib36) 2018; 8
Chen (10.1016/j.carbon.2021.03.063_bib31) 2011; 11
Chen (10.1016/j.carbon.2021.03.063_bib12) 2016; 27
Huang (10.1016/j.carbon.2021.03.063_bib44) 2017; 50
Sun (10.1016/j.carbon.2021.03.063_bib50) 2020; 55
Li (10.1016/j.carbon.2021.03.063_bib14) 2019; 30
Jacobs (10.1016/j.carbon.2021.03.063_bib26) 2010; 115
Li (10.1016/j.carbon.2021.03.063_bib8) 2019; 324
Farma (10.1016/j.carbon.2021.03.063_bib56) 2013; 8
Li (10.1016/j.carbon.2021.03.063_bib11) 2016; 19
Li (10.1016/j.carbon.2021.03.063_bib52) 2018; 57
Monteil-Rivera (10.1016/j.carbon.2021.03.063_bib39) 2013; 41
Chen (10.1016/j.carbon.2021.03.063_bib53) 2020; 30
Xiong (10.1016/j.carbon.2021.03.063_bib25) 2017; 5
Wang (10.1016/j.carbon.2021.03.063_bib7) 2013; 2
Wu (10.1016/j.carbon.2021.03.063_bib6) 2015; 13
Huang (10.1016/j.carbon.2021.03.063_bib51) 2016; 8
Liu (10.1016/j.carbon.2021.03.063_bib41) 2008; 82
Kshetri (10.1016/j.carbon.2021.03.063_bib2) 2020; 380
Jiang (10.1016/j.carbon.2021.03.063_bib16) 2013; 6
Wang (10.1016/j.carbon.2021.03.063_bib59) 2013; 5
Del Ángel-Meraz (10.1016/j.carbon.2021.03.063_bib33) 2020; 31
Liu (10.1016/j.carbon.2021.03.063_bib42) 2015; 17
Huang (10.1016/j.carbon.2021.03.063_bib15) 2019; 55
Zhu (10.1016/j.carbon.2021.03.063_bib22) 2020; 76
Gong (10.1016/j.carbon.2021.03.063_bib55) 2017; 19
Cheng (10.1016/j.carbon.2021.03.063_bib34) 2015; 15
Zhang (10.1016/j.carbon.2021.03.063_bib35) 2016; 28
Yin (10.1016/j.carbon.2021.03.063_bib48) 2020; 156
Ammar (10.1016/j.carbon.2021.03.063_bib23) 2009; 11
Zhang (10.1016/j.carbon.2021.03.063_bib58) 2019; 123
Huang (10.1016/j.carbon.2021.03.063_bib45) 2015; 9
Wang (10.1016/j.carbon.2021.03.063_bib24) 2017; 363
Han (10.1016/j.carbon.2021.03.063_bib61) 2019; 11
Norgren (10.1016/j.carbon.2021.03.063_bib20) 2014; 19
Chang (10.1016/j.carbon.2021.03.063_bib38) 2015; 176
Zhao (10.1016/j.carbon.2021.03.063_bib5) 2015; 286
Pantaleón (10.1016/j.carbon.2021.03.063_bib37) 2010; 31
Shi (10.1016/j.carbon.2021.03.063_bib1) 2019; 15
Han (10.1016/j.carbon.2021.03.063_bib62) 2019; 149
Guo (10.1016/j.carbon.2021.03.063_bib21) 2017; 19
Schlee (10.1016/j.carbon.2021.03.063_bib46) 2019; 145
Zhang (10.1016/j.carbon.2021.03.063_bib17) 2015; 8
Ma (10.1016/j.carbon.2021.03.063_bib47) 2018; 456
Sing (10.1016/j.carbon.2021.03.063_bib32) 1985; 57
Liang (10.1016/j.carbon.2021.03.063_bib29) 2014; 53
Wang (10.1016/j.carbon.2021.03.063_bib54) 2020; 404
References_xml – volume: 8
  start-page: 257
  year: 2013
  end-page: 273
  ident: bib56
  article-title: Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon
  publication-title: Int. J. Electrochem. Sci.
– volume: 20
  start-page: 5031
  year: 2018
  end-page: 5057
  ident: bib18
  article-title: State-of-the-art on the production and application of carbon nanomaterials from biomass
  publication-title: Green Chem.
– volume: 14
  start-page: 6614
  year: 2008
  end-page: 6626
  ident: bib30
  article-title: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes
  publication-title: Chemistry
– volume: 363
  start-page: 375
  year: 2017
  end-page: 383
  ident: bib24
  article-title: Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors
  publication-title: J. Power Sources
– volume: 55
  start-page: 5166
  year: 2020
  end-page: 5176
  ident: bib50
  article-title: Biomass-derived porous carbon electrodes for high-performance supercapacitors
  publication-title: J. Mater. Sci.
– volume: 380
  year: 2020
  ident: bib2
  article-title: Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor
  publication-title: Chem. Eng. J.
– start-page: 753
  year: 2020
  end-page: 760
  ident: bib19
  article-title: Sustainable production of value-added carbon nanomaterials from biomass pyrolysis
  publication-title: Nature Sustainability
– volume: 182
  year: 2019
  ident: bib27
  article-title: Preparation of electrospun chitosan/poly(ethylene oxide) composite nanofibers reinforced with cellulose nanocrystals: structure, morphology, and mechanical behavior
  publication-title: Compos. Sci. Technol.
– volume: 296
  start-page: 907
  year: 2019
  end-page: 915
  ident: bib4
  article-title: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO
  publication-title: Electrochim. Acta
– volume: 384
  year: 2020
  ident: bib3
  article-title: Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 15205
  year: 2016
  end-page: 15215
  ident: bib51
  article-title: Biobased nano porous active carbon fibers for high-performance supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 4766
  year: 2015
  end-page: 4775
  ident: bib45
  article-title: From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles
  publication-title: ACS Nano
– volume: 8
  start-page: 2114
  year: 2015
  end-page: 2122
  ident: bib17
  article-title: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method
  publication-title: ChemSusChem
– volume: 19
  start-page: 409
  year: 2014
  end-page: 416
  ident: bib20
  article-title: Lignin: recent advances and emerging applications
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 156
  start-page: 988
  year: 2020
  end-page: 996
  ident: bib48
  article-title: Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor
  publication-title: Int. J. Biol. Macromol.
– volume: 31
  start-page: 7547
  year: 2020
  end-page: 7554
  ident: bib33
  article-title: The use of activated carbon from coffee endocarp for the manufacture of supercapacitors
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 57
  start-page: 7085
  year: 2018
  end-page: 7090
  ident: bib52
  article-title: Wood-derived ultrathin carbon nanofiber aerogels
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 30
  year: 2020
  ident: bib53
  article-title: Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 4132
  year: 2017
  end-page: 4140
  ident: bib55
  article-title: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors
  publication-title: Green Chem.
– volume: 17
  start-page: 4888
  year: 2015
  end-page: 4907
  ident: bib42
  article-title: Thermochemical conversion of lignin to functional materials: a review and future directions
  publication-title: Green Chem.
– volume: 11
  start-page: 44624
  year: 2019
  end-page: 44635
  ident: bib61
  article-title: Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness
  publication-title: ACS Appl. Mater. Interfaces
– volume: 145
  start-page: 470
  year: 2019
  end-page: 480
  ident: bib46
  article-title: From waste to wealth: from Kraft lignin to free-standing supercapacitors
  publication-title: Carbon
– volume: 15
  start-page: 66
  year: 2015
  end-page: 74
  ident: bib34
  article-title: Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode
  publication-title: Nanomater. Energy
– volume: 19
  start-page: 2595
  year: 2017
  end-page: 2602
  ident: bib21
  article-title: Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities
  publication-title: Green Chem.
– volume: 456
  start-page: 568
  year: 2018
  end-page: 576
  ident: bib47
  article-title: Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors
  publication-title: Appl. Surf. Sci.
– volume: 49
  start-page: 1248
  year: 2011
  end-page: 1257
  ident: bib60
  article-title: Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor
  publication-title: Carbon
– volume: 5
  start-page: 2273
  year: 2017
  end-page: 2281
  ident: bib25
  article-title: Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly
  publication-title: ACS Sustain. Chem. Eng.
– volume: 397
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib49
  article-title: Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors
  publication-title: J. Power Sources
– volume: 286
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib5
  article-title: Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode
  publication-title: J. Power Sources
– volume: 115
  start-page: 3130
  year: 2010
  end-page: 3136
  ident: bib26
  article-title: The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers
  publication-title: J. Appl. Polym. Sci.
– volume: 76
  year: 2020
  ident: bib22
  article-title: A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors
  publication-title: Prog. Energy Combust. Sci.
– volume: 28
  start-page: 9539
  year: 2016
  end-page: 9544
  ident: bib35
  article-title: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 404
  year: 2020
  ident: bib54
  article-title: Metal-organic framework-based materials for hybrid supercapacitor application
  publication-title: Coord. Chem. Rev.
– volume: 2
  start-page: 294
  year: 2013
  end-page: 303
  ident: bib7
  article-title: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors
  publication-title: Nanomater. Energy
– volume: 41
  start-page: 409
  year: 2005
  end-page: 421
  ident: bib28
  article-title: Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers
  publication-title: Eur. Polym. J.
– volume: 55
  start-page: 9168
  year: 2019
  end-page: 9171
  ident: bib15
  article-title: 3D honeycomb-like carbon foam synthesized with biomass buckwheat flour for high-performance supercapacitor electrodes
  publication-title: Chem. Commun.
– volume: 27
  start-page: 377
  year: 2016
  end-page: 389
  ident: bib12
  article-title: Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors
  publication-title: Nanomater. Energy
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  ident: bib32
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)
  publication-title: Pure Appl. Chem.
– volume: 13
  start-page: 527
  year: 2015
  end-page: 536
  ident: bib6
  article-title: From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors
  publication-title: Nanomater. Energy
– volume: 123
  start-page: 23374
  year: 2019
  end-page: 23381
  ident: bib58
  article-title: Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor
  publication-title: J. Phys. Chem. C
– volume: 15
  year: 2019
  ident: bib1
  article-title: 1D carbon-based nanocomposites for electrochemical energy storage
  publication-title: Small
– volume: 30
  start-page: 19415
  year: 2019
  end-page: 19425
  ident: bib14
  article-title: Biomass-derived 3D hierarchical porous carbon by two-step activation method for supercapacitor
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 176
  start-page: 1352
  year: 2015
  end-page: 1357
  ident: bib38
  article-title: Influence of H
  publication-title: Electrochim. Acta
– volume: 86
  start-page: 1781
  year: 2007
  end-page: 1788
  ident: bib40
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 149
  start-page: 1
  year: 2019
  end-page: 18
  ident: bib62
  article-title: A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network
  publication-title: Carbon
– volume: 53
  start-page: 12803
  year: 2014
  end-page: 12807
  ident: bib29
  article-title: Bowl-like SnO
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 412
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib13
  article-title: Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors
  publication-title: J. Power Sources
– volume: 11
  start-page: 5165
  year: 2011
  end-page: 5172
  ident: bib31
  article-title: High-performance nanostructured supercapacitors on a sponge
  publication-title: Nano Lett.
– volume: 19
  start-page: 165
  year: 2016
  end-page: 175
  ident: bib11
  article-title: Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors
  publication-title: Nanomater. Energy
– volume: 324
  year: 2019
  ident: bib8
  article-title: Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors
  publication-title: Electrochim. Acta
– volume: 1
  year: 2019
  ident: bib43
  article-title: Structure, chemistry and physicochemistry of lignin for material functionalization
  publication-title: SN Applied Sciences
– volume: 41
  start-page: 356
  year: 2013
  end-page: 364
  ident: bib39
  article-title: Isolation and characterization of herbaceous lignins for applications in biomaterials
  publication-title: Ind. Crop. Prod.
– volume: 165
  start-page: 10
  year: 2019
  end-page: 46
  ident: bib9
  article-title: The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor
  publication-title: Compos. B Eng.
– volume: 5
  start-page: 12275
  year: 2013
  end-page: 12282
  ident: bib59
  article-title: Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 69
  year: 2009
  end-page: 75
  ident: bib23
  article-title: Separating, characterization and application of alfa grass (stipa tenacissima) chemical components 1. Pulping of alfa grass with formic acid/acetic acid mixture
  publication-title: Journal de la Société Chimique de Tunisie
– volume: 27
  start-page: 824
  year: 2020
  end-page: 828
  ident: bib10
  article-title: Review on exploration of graphene in diverse applications and its future horizon
  publication-title: Mater. Today: Proceedings
– volume: 50
  year: 2017
  ident: bib44
  article-title: Functional flexible and wearable supercapacitors
  publication-title: J. Phys. Appl. Phys.
– volume: 6
  start-page: 41
  year: 2013
  end-page: 53
  ident: bib16
  article-title: 3D carbon based nanostructures for advanced supercapacitors
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 1585
  year: 2010
  end-page: 1592
  ident: bib37
  article-title: Structure and thermostability of PMMA in PMMA/silica nanocomposites: effect of high-energy ball milling and the amount of the nanofiller
  publication-title: Polym. Compos.
– volume: 82
  start-page: 170
  year: 2008
  end-page: 177
  ident: bib41
  article-title: Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis
  publication-title: J. Anal. Appl. Pyrol.
– volume: 132
  start-page: 254
  year: 2013
  end-page: 261
  ident: bib57
  article-title: Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors
  publication-title: Bioresour. Technol.
– volume: 8
  year: 2018
  ident: bib36
  article-title: Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 456
  start-page: 568
  year: 2018
  ident: 10.1016/j.carbon.2021.03.063_bib47
  article-title: Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.189
– volume: 19
  start-page: 165
  year: 2016
  ident: 10.1016/j.carbon.2021.03.063_bib11
  article-title: Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2015.10.038
– volume: 8
  start-page: 15205
  year: 2016
  ident: 10.1016/j.carbon.2021.03.063_bib51
  article-title: Biobased nano porous active carbon fibers for high-performance supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02214
– volume: 57
  start-page: 603
  issue: 4
  year: 1985
  ident: 10.1016/j.carbon.2021.03.063_bib32
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198557040603
– volume: 31
  start-page: 7547
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib33
  article-title: The use of activated carbon from coffee endocarp for the manufacture of supercapacitors
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-03123-1
– volume: 49
  start-page: 1248
  year: 2011
  ident: 10.1016/j.carbon.2021.03.063_bib60
  article-title: Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.11.043
– volume: 20
  start-page: 5031
  year: 2018
  ident: 10.1016/j.carbon.2021.03.063_bib18
  article-title: State-of-the-art on the production and application of carbon nanomaterials from biomass
  publication-title: Green Chem.
  doi: 10.1039/C8GC01748D
– volume: 132
  start-page: 254
  year: 2013
  ident: 10.1016/j.carbon.2021.03.063_bib57
  article-title: Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.01.044
– volume: 404
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib54
  article-title: Metal-organic framework-based materials for hybrid supercapacitor application
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213093
– volume: 149
  start-page: 1
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib62
  article-title: A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.029
– volume: 31
  start-page: 1585
  year: 2010
  ident: 10.1016/j.carbon.2021.03.063_bib37
  article-title: Structure and thermostability of PMMA in PMMA/silica nanocomposites: effect of high-energy ball milling and the amount of the nanofiller
  publication-title: Polym. Compos.
  doi: 10.1002/pc.20946
– volume: 19
  start-page: 2595
  year: 2017
  ident: 10.1016/j.carbon.2021.03.063_bib21
  article-title: Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities
  publication-title: Green Chem.
  doi: 10.1039/C7GC00506G
– volume: 50
  year: 2017
  ident: 10.1016/j.carbon.2021.03.063_bib44
  article-title: Functional flexible and wearable supercapacitors
  publication-title: J. Phys. Appl. Phys.
– volume: 156
  start-page: 988
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib48
  article-title: Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.04.102
– volume: 5
  start-page: 2273
  year: 2017
  ident: 10.1016/j.carbon.2021.03.063_bib25
  article-title: Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02585
– volume: 41
  start-page: 409
  year: 2005
  ident: 10.1016/j.carbon.2021.03.063_bib28
  article-title: Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2004.10.010
– volume: 30
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib53
  article-title: Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 409
  year: 2014
  ident: 10.1016/j.carbon.2021.03.063_bib20
  article-title: Lignin: recent advances and emerging applications
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2014.08.004
– volume: 82
  start-page: 170
  year: 2008
  ident: 10.1016/j.carbon.2021.03.063_bib41
  article-title: Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2008.03.007
– volume: 123
  start-page: 23374
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib58
  article-title: Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b06058
– volume: 115
  start-page: 3130
  year: 2010
  ident: 10.1016/j.carbon.2021.03.063_bib26
  article-title: The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.31396
– volume: 11
  start-page: 69
  year: 2009
  ident: 10.1016/j.carbon.2021.03.063_bib23
  article-title: Separating, characterization and application of alfa grass (stipa tenacissima) chemical components 1. Pulping of alfa grass with formic acid/acetic acid mixture
  publication-title: Journal de la Société Chimique de Tunisie
– volume: 8
  year: 2018
  ident: 10.1016/j.carbon.2021.03.063_bib36
  article-title: Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802386
– volume: 13
  start-page: 527
  year: 2015
  ident: 10.1016/j.carbon.2021.03.063_bib6
  article-title: From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2015.03.013
– volume: 384
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib3
  article-title: Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123263
– volume: 11
  start-page: 44624
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib61
  article-title: Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16458
– volume: 380
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib2
  article-title: Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122543
– volume: 14
  start-page: 6614
  year: 2008
  ident: 10.1016/j.carbon.2021.03.063_bib30
  article-title: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes
  publication-title: Chemistry
  doi: 10.1002/chem.200800639
– volume: 8
  start-page: 2114
  year: 2015
  ident: 10.1016/j.carbon.2021.03.063_bib17
  article-title: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403486
– volume: 145
  start-page: 470
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib46
  article-title: From waste to wealth: from Kraft lignin to free-standing supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.035
– volume: 2
  start-page: 294
  year: 2013
  ident: 10.1016/j.carbon.2021.03.063_bib7
  article-title: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2012.10.001
– volume: 53
  start-page: 12803
  year: 2014
  ident: 10.1016/j.carbon.2021.03.063_bib29
  article-title: Bowl-like SnO2 @carbon hollow particles as an advanced anode material for lithium-ion batteries
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201407917
– volume: 27
  start-page: 824
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib10
  article-title: Review on exploration of graphene in diverse applications and its future horizon
  publication-title: Mater. Today: Proceedings
– volume: 182
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib27
  article-title: Preparation of electrospun chitosan/poly(ethylene oxide) composite nanofibers reinforced with cellulose nanocrystals: structure, morphology, and mechanical behavior
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107774
– volume: 15
  start-page: 66
  year: 2015
  ident: 10.1016/j.carbon.2021.03.063_bib34
  article-title: Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2015.04.007
– volume: 55
  start-page: 9168
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib15
  article-title: 3D honeycomb-like carbon foam synthesized with biomass buckwheat flour for high-performance supercapacitor electrodes
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03039E
– volume: 27
  start-page: 377
  year: 2016
  ident: 10.1016/j.carbon.2021.03.063_bib12
  article-title: Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2016.07.020
– volume: 324
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib8
  article-title: Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134878
– volume: 11
  start-page: 5165
  year: 2011
  ident: 10.1016/j.carbon.2021.03.063_bib31
  article-title: High-performance nanostructured supercapacitors on a sponge
  publication-title: Nano Lett.
  doi: 10.1021/nl2023433
– volume: 15
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib1
  article-title: 1D carbon-based nanocomposites for electrochemical energy storage
  publication-title: Small
  doi: 10.1002/smll.201902348
– volume: 76
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib22
  article-title: A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2019.100788
– volume: 296
  start-page: 907
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib4
  article-title: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.074
– volume: 412
  start-page: 1
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib13
  article-title: Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.032
– volume: 41
  start-page: 356
  year: 2013
  ident: 10.1016/j.carbon.2021.03.063_bib39
  article-title: Isolation and characterization of herbaceous lignins for applications in biomaterials
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2012.04.049
– volume: 286
  start-page: 1
  year: 2015
  ident: 10.1016/j.carbon.2021.03.063_bib5
  article-title: Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.141
– volume: 165
  start-page: 10
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib9
  article-title: The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.11.085
– volume: 363
  start-page: 375
  year: 2017
  ident: 10.1016/j.carbon.2021.03.063_bib24
  article-title: Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.097
– volume: 8
  start-page: 257
  year: 2013
  ident: 10.1016/j.carbon.2021.03.063_bib56
  article-title: Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)14018-1
– volume: 1
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib43
  article-title: Structure, chemistry and physicochemistry of lignin for material functionalization
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-1126-8
– volume: 19
  start-page: 4132
  year: 2017
  ident: 10.1016/j.carbon.2021.03.063_bib55
  article-title: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors
  publication-title: Green Chem.
  doi: 10.1039/C7GC01681F
– volume: 57
  start-page: 7085
  year: 2018
  ident: 10.1016/j.carbon.2021.03.063_bib52
  article-title: Wood-derived ultrathin carbon nanofiber aerogels
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201802753
– start-page: 753
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib19
  article-title: Sustainable production of value-added carbon nanomaterials from biomass pyrolysis
  publication-title: Nature Sustainability
  doi: 10.1038/s41893-020-0538-1
– volume: 5
  start-page: 12275
  year: 2013
  ident: 10.1016/j.carbon.2021.03.063_bib59
  article-title: Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4043867
– volume: 6
  start-page: 41
  year: 2013
  ident: 10.1016/j.carbon.2021.03.063_bib16
  article-title: 3D carbon based nanostructures for advanced supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23284G
– volume: 55
  start-page: 5166
  year: 2020
  ident: 10.1016/j.carbon.2021.03.063_bib50
  article-title: Biomass-derived porous carbon electrodes for high-performance supercapacitors
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-04343-5
– volume: 28
  start-page: 9539
  year: 2016
  ident: 10.1016/j.carbon.2021.03.063_bib35
  article-title: Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602913
– volume: 86
  start-page: 1781
  year: 2007
  ident: 10.1016/j.carbon.2021.03.063_bib40
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.013
– volume: 176
  start-page: 1352
  year: 2015
  ident: 10.1016/j.carbon.2021.03.063_bib38
  article-title: Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.07.076
– volume: 17
  start-page: 4888
  year: 2015
  ident: 10.1016/j.carbon.2021.03.063_bib42
  article-title: Thermochemical conversion of lignin to functional materials: a review and future directions
  publication-title: Green Chem.
  doi: 10.1039/C5GC01054C
– volume: 397
  start-page: 1
  year: 2018
  ident: 10.1016/j.carbon.2021.03.063_bib49
  article-title: Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.100
– volume: 30
  start-page: 19415
  year: 2019
  ident: 10.1016/j.carbon.2021.03.063_bib14
  article-title: Biomass-derived 3D hierarchical porous carbon by two-step activation method for supercapacitor
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-02303-y
– volume: 9
  start-page: 4766
  year: 2015
  ident: 10.1016/j.carbon.2021.03.063_bib45
  article-title: From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00860
SSID ssj0004814
Score 2.5752754
Snippet Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Aqueous electrolytes
Biomass
Biomass-derived lignin
Capacitance
Carbon
Carbonization
electric potential difference
electrochemical capacitors
electrodes
Electrospraying
Functional materials
Graphitization
Honeycomb-like multilayered carbon
Lignin
macropores
microparticles
micropores
Microspheres
Microstructure
One-step carbonization
Polymethyl methacrylate
Pore size
porosity
Porous materials
renewable energy sources
Structural hierarchy
Supercapacitors
Title A novel strategy combining electrospraying and one-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin
URI https://dx.doi.org/10.1016/j.carbon.2021.03.063
https://www.proquest.com/docview/2549019065
https://www.proquest.com/docview/2551973142
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhObSXkvRBt3mgQq9qpJUse4_LkrBpaU4N5CZsSyLbGtvsI7CX_pz8zsxIckICIdCLwdbDkmYsfbLmmyHk24Rb4bysGCiIZqrynFVSOLgoUQuvrAxxyH5d6vmV-nGdXe-Q2cCFQbPKNPfHOT3M1unJaRrN036xQI4vwvExklC4zHMk_CqVo5Z___do5qGK6N8bj_kx90CfCzZedbmsOvSCOhbB1amWLy1PzybqsPqc75N3CTbSaWzZAdlx7XvyZjZEa_tA7qa07W5dQ1fR3eyWQo-qEP2BplA3q35ZIqmJlq2lXesYCLinsXGJjUkBwlKAhLRfuugUHJ51nm6a8EME9vH0BkpusW7WLP46GgwSm3KLIT9TXRQpKxR5_QDMmQUVv4U0KA2N-Uiuzs9-z-YsxWBgtZJyzca1yHyRlYW1JYBFZXOlszy30hXeQYoDBGiLiVXoic_lsuJWa19mUgurnBfyE9ltoWGfCZ0oXnPti5pzp_B8FpBd4bUTvC5w0RwROQy9qZODcoyT0ZjBEu2Pif0wKDDDpQGBjQh7KNVHBx2v5M8HqZonimZgDXml5NGgBCZ96CuD-2uk4-tsRL4-JIPs8dylbF23wTzIDpZCjb_898sPyVu8i4bCR2R3vdy4Y4BD6-ok6PsJ2Zte_Jxf3gNXnQ3E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBXp5pBeSj_pJmmrQq8i0kqWtcdladg0yZ4SyE3YlkS3NbbZj8D-of7OzFhySgsl0IsPlseWPWPp2Zr3hpAvU-6ED7JkECCaqTJwVkrhYaNEJYJysq9Ddr3Ui1v17S67OyDzgQuDaZVp7I9jej9apz1n6WmedasVcnwRjk-QhMJlnptn5BDVqbIROZxdXC6Wv-mRJkp840o_GgwMuj7NqyrWZYtCqBPRq51q-a8Z6q-xup-Azl-SFwk50lns3Cty4JvX5Gg-FGx7Q37NaNPe-5puouLsnsJNlX0BCJqq3Wy6dYG8Jlo0jraNZ-DjjsbOJUImBRRLARXSbu2jLjjsawPd1f0_EfiUp9_Bco_nZvXqp6d9TmJd7LHqZzoXRdYKRWo_YHPmIMrvoQ2soTNvye3515v5gqUyDKxSUm7ZpBJZMFlhnCsALyqXK53luZPeBA8tHkCgM1OnUIzP57LkTutQZFILp3wQ8h0ZNdCx94ROFa-4Dqbi3CtcogVwZ4L2glcG580xkcOjt1XSKMdSGbUdktF-2HgfFh1mubTgsDFhj1Zd1Oh44vh88Kr9I9YsTCNPWJ4OQWDTu76x-ImNjHydjcnnx2bwPS69FI1vd3gMEoSlUJPj_774J3K0uLm-slcXy8sT8hxbYt7wKRlt1zv_AdDRtvyYov8BgNQQdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+strategy+combining+electrospraying+and+one-step+carbonization+for+the+preparation+of+ultralight+honeycomb-like+multilayered+carbon+from+biomass-derived+lignin&rft.jtitle=Carbon+%28New+York%29&rft.au=Cao%2C+Meilian&rft.au=Wang%2C+Qingxiang&rft.au=Cheng%2C+Wanli&rft.au=Huan%2C+Siqi&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=179&rft.spage=68&rft_id=info:doi/10.1016%2Fj.carbon.2021.03.063&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon