A novel strategy combining electrospraying and one-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin

Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study,...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 179; pp. 68 - 79
Main Authors Cao, Meilian, Wang, Qingxiang, Cheng, Wanli, Huan, Siqi, Hu, Yi, Niu, Zhaoxuan, Han, Guangping, Cheng, Haitao, Wang, Ge
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Despite the great advantages of interconnected porous architectures of three-dimensional carbon as functional materials, apparent common drawbacks restricting their widespread applications are high cost and non-renewable of the carbon precursors and complicated activation procedures. In this study, biomass-derived honeycomb-like multilayered carbon (HMC) is synthesized by electrospraying and direct carbonization for the first time. Poly (methyl methacrylate) (PMMA) is mixed with biomass-derived lignin, the only carbon source, to form lignin/PMMA microspheres and microbowls by electrospraying. One-step carbonization of prepared micromaterials to obtain ultralight HMC, and the microstructures and pore size of carbon materials are controllable by adjusting the applied voltage of electrospraying. The obtained HMC-13 by carbonization of lignin/PMMA microspheres possesses interconnected carbon skeleton, partially graphitized structure and hierarchical pore system composed of macropores, mesopores and micropores. Benefiting from the structural advantages, HMC-13 as electrode of supercapacitor delivers a high specific capacitance of 348 F g−1 at 0.5 A g−1 in aqueous electrolytes. Additionally, the supercapacitor exhibits excellent cycling stability with only 4% capacitance loss after 10 000 cycles. Based on these encouraging results, environmental friendliness and facile synthesis strategy, the biomass-derived ultralight porous carbon material holds great promise for facilitating wasted biomass utilization and developing sustainable energy products. [Display omitted] •A strategy combining electrospraying and carbonization to get carbon was developed.•The synthesized ultralight carbon possessed honeycomb-like multilayered structure.•The obtained carbon had partially graphitized structure and hierarchical pore system.•The prepared carbon as electrode exhibited excellent electrochemical performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2021.03.063