Heterogeneous Fenton-like surface properties of oxygenated graphitic carbon nitride
[Display omitted] The photo-Fenton activity of graphitic carbon nitride (g-C3N4) has been widely studied, nevertheless, its Fenton-like catalytic behavior in the dark has not yet been demonstrated. In the present work, it is shown that oxygenated g-C3N4 obtained at different temperatures (500–600 °C...
Saved in:
Published in | Journal of colloid and interface science Vol. 587; pp. 479 - 488 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
The photo-Fenton activity of graphitic carbon nitride (g-C3N4) has been widely studied, nevertheless, its Fenton-like catalytic behavior in the dark has not yet been demonstrated. In the present work, it is shown that oxygenated g-C3N4 obtained at different temperatures (500–600 °C) can degrade indigo carmine with hydrogen peroxide in the dark by a reaction similar to a conventional Fenton’s reaction. Based on an extensive characterization of g-C3N4, we conclude that Fenton-like activity is directly related to the oxygenated functional groups on g-C3N4 structure, mainly by –OH functional groups. Oxygenated functional groups (e.g., hydroquinone-like groups) can reduce the H2O2 and generate oxidizing hydroxyl radicals, just like in the Fenton reaction performed by metals. In addition to new information on g-C3N4 surface reactivity revealed by this study, the metal-free oxygenated g-C3N4 catalyst may be an alternative to traditional metal catalysts used in Fenton-like reactions for advanced oxidation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2020.12.031 |