Resolution of Nonlinear Magnetostatic Problems With a Volume Integral Method Using the Magnetic Scalar Potential

An integral method using the magnetic scalar potential to solve nonlinear magnetostatic problems is developed. This method uses the range interactions between magnetizable elements and it is particularly well suited to compute field in the air domain which do not need to be meshed. The collocation a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 49; no. 5; pp. 1685 - 1688
Main Authors Carpentier, Anthony, Chadebec, Olivier, Galopin, Nicolas, Meunier, Gerard, Bannwarth, Bertrand
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.05.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An integral method using the magnetic scalar potential to solve nonlinear magnetostatic problems is developed. This method uses the range interactions between magnetizable elements and it is particularly well suited to compute field in the air domain which do not need to be meshed. The collocation and Galerkin approaches are presented and compared to solve the nonlinear magnetostatic equation. Both methods need the construction of full interaction matrices which may be computed with analytical formulae. A Newton-Raphson method, in which the interaction matrix must be built at each solver iteration, is used to solve the nonlinear formulation. A modified fixed point scheme, in which the interaction matrix is built only once, is also proposed. 3-D numerical examples are given and results of the different methods are compared.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2013.2241750