Single image dehazing with bright object handling
This study addresses the shortcomings of the dark channel prior (DCP). The authors propose a new and efficient method for transmission estimation with bright-object handling capability. Based on the intensity value of a bright surface, they categorise DCP failures into two types: (i) obvious failure...
Saved in:
Published in | IET computer vision Vol. 10; no. 8; pp. 817 - 827 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.12.2016
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study addresses the shortcomings of the dark channel prior (DCP). The authors propose a new and efficient method for transmission estimation with bright-object handling capability. Based on the intensity value of a bright surface, they categorise DCP failures into two types: (i) obvious failure: occurs on surfaces that are brighter than ambient light. They show that, for these surfaces, altering the transmission value proportional to the brightness is better than the thresholding strategy; (ii) non-obvious failure: occurs on surfaces that are brighter than the neighbourhood average haziness value. Based on the observation that the transmission of a surface is loosely connected to its neighbours, the local average haziness value is used to recompute the transmission of such surfaces. This twofold strategy produces a better estimate of block and pixel-level haze thickness than DCP. To reduce haloes, a reliability map of block-level haze is generated. Then, via reliability-guided fusion of block- and pixel-level haze values, a high-quality refined transmission is obtained. Experimental results show that the authors’ method competes well with state-of-the-art methods in typical benchmark images while outperforming these methods in more challenging scenarios. The authors’ proposed reliability-guided fusion technique is about 60 times faster than other well-known DCP-based approaches. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1751-9632 1751-9640 1751-9640 |
DOI: | 10.1049/iet-cvi.2015.0451 |