Estimating model error covariances using particle filters

A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a...

Full description

Saved in:
Bibliographic Details
Published inQuarterly journal of the Royal Meteorological Society Vol. 144; no. 713; pp. 1310 - 1320
Main Authors Zhu, Mengbin, van Leeuwen, Peter J., Zhang, Weimin
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.04.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa. Modelling detailed atmospheric physical processes, such as stratocumulus clouds, is extremely difficult, and present‐day parametrizations are failing. To improve the models one could add stochastic model errors. We use a fully nonlinear particle filter to estimate model error characteristics, avoiding the need also to estimate the state covariance.
AbstractList A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa.A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa.
A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa.
A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa.
A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa. Modelling detailed atmospheric physical processes, such as stratocumulus clouds, is extremely difficult, and present‐day parametrizations are failing. To improve the models one could add stochastic model errors. We use a fully nonlinear particle filter to estimate model error characteristics, avoiding the need also to estimate the state covariance.
Author Zhang, Weimin
van Leeuwen, Peter J.
Zhu, Mengbin
AuthorAffiliation 2 Department of Meteorology University of Reading UK
1 Academy of Ocean Science and Engineering, National University of Defense Technology Changsha China
3 National Centre for Earth Observation, University of Reading UK
AuthorAffiliation_xml – name: 3 National Centre for Earth Observation, University of Reading UK
– name: 1 Academy of Ocean Science and Engineering, National University of Defense Technology Changsha China
– name: 2 Department of Meteorology University of Reading UK
Author_xml – sequence: 1
  givenname: Mengbin
  surname: Zhu
  fullname: Zhu, Mengbin
  organization: Academy of Ocean Science and Engineering, National University of Defense Technology
– sequence: 2
  givenname: Peter J.
  surname: van Leeuwen
  fullname: van Leeuwen, Peter J.
  email: p.j.vanleeuwen@reading.ac.uk
  organization: National Centre for Earth Observation, University of Reading
– sequence: 3
  givenname: Weimin
  surname: Zhang
  fullname: Zhang, Weimin
  organization: Academy of Ocean Science and Engineering, National University of Defense Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31031422$$D View this record in MEDLINE/PubMed
BookMark eNp10VtLHDEUB_AgFl0v-A3KQB8UyujJSWay8yKIaC8IIij4FjKZRLNkJ7vJjMVv32xXpUr7EPJwfvw5lx2y2YfeEHJA4ZgC4Mlydswoww0yoVyIcirgfpNMAFhVNgDNNtlJaQYAlUCxRbYZBUY54oQ0F2lwczW4_qGYh874wsQYYqHDk4pO9dqkYkyr6kLFwWlvCuv8YGLaI5-s8snsv_y75O7y4vb8e3l1_e3H-dlVqTljWLbTDmrFhWWGN8IKgRUKJRTYthaq6mquW1s1mjcVthVniNZik2mXH1jLdsnpOncxtnPTadMPUXm5iLnt-CyDcvJ9pXeP8iE8yZoLjjXNAUcvATEsR5MGOXdJG-9Vb8KYJCKthaCM80y_fKCzMMY-jyeRUsAacCqy-vx3R2-tvG41g8M10DGkFI19IxTk6l5yOZOre2VZfpDaDfkaYTWK8__wX9f-l_Pm-X-x8ubnH_0b6U6jbQ
CitedBy_id crossref_primary_10_1002_qj_3382
crossref_primary_10_1029_2018WR023629
crossref_primary_10_1029_2021MS002564
crossref_primary_10_1137_19M1297300
crossref_primary_10_16993_tellusa_55
crossref_primary_10_1002_qj_3378
crossref_primary_10_1002_qj_3798
crossref_primary_10_1016_j_asoc_2019_105624
crossref_primary_10_1016_j_apm_2021_11_006
crossref_primary_10_1002_qj_3824
Cites_doi 10.1002/qj.699
10.1002/qj.339
10.3402/tellusa.v67.24822
10.1002/qj.2460
10.1175/2011MWR3553.1
10.1002/fld.1636
10.1175/2009MWR2778.1
10.1029/94JC00572
10.1175/MWR-D-15-0163.1
10.1002/qj.2784
10.1002/qj.2546
10.1002/qj.340
10.1002/qj.2306
10.1016/j.physd.2006.02.011
10.1111/j.1600-0870.2008.00361.x
10.1002/qj.49711247414
10.1137/130907367
10.1175/2009MWR3157.1
10.1093/biomet/ast020
10.3402/tellusa.v65i0.19546
10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
10.1175/2008MWR2312.1
10.1073/pnas.0909196106
10.1256/qj.05.108
10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
10.1002/qj.2464
ContentType Journal Article
Copyright 2017 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
2018 Royal Meteorological Society
Copyright_xml – notice: 2017 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
– notice: 2018 Royal Meteorological Society
DBID 24P
AAYXX
CITATION
NPM
7TG
7TN
F1W
H96
KL.
L.G
7X8
5PM
DOI 10.1002/qj.3132
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Physics
DocumentTitleAlternate Estimating Model Error Covariance Using Implicit Equal‐Weights Particle Filter
EISSN 1477-870X
EndPage 1320
ExternalDocumentID PMC6474261
31031422
10_1002_qj_3132
QJ3132
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  funderid: 41375113; 41475094; 41675097
– fundername: European Union's Horizon 2020 research and innovation programme
– fundername: European Research Council (ERC)
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 41375113; 41475094; 41675097
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7TG
7TN
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F1W
H96
KL.
L.G
7X8
5PM
ID FETCH-LOGICAL-c4332-b8d06a47f3e497f772527a7a0fb67a5d64cbf59c4952b54322ff29497d4970ff3
IEDL.DBID DR2
ISSN 0035-9009
IngestDate Thu Aug 21 13:46:14 EDT 2025
Fri Jul 11 05:00:33 EDT 2025
Fri Jul 25 10:29:00 EDT 2025
Wed Feb 19 02:33:21 EST 2025
Tue Jul 01 00:43:52 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Wed Jan 22 16:24:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 713
Keywords localization
non‐degeneracy
particle filter
model error covariance
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4332-b8d06a47f3e497f772527a7a0fb67a5d64cbf59c4952b54322ff29497d4970ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.3132
PMID 31031422
PQID 2110260287
PQPubID 1016432
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6474261
proquest_miscellaneous_2216771344
proquest_journals_2110260287
pubmed_primary_31031422
crossref_primary_10_1002_qj_3132
crossref_citationtrail_10_1002_qj_3132
wiley_primary_10_1002_qj_3132_QJ3132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018 Part B
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018 Part B
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationTitleAlternate Q J R Meteorol Soc
PublicationYear 2018
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2005; 131
2011; 139
2013; 65
2009; 61
1986; 112
2013; 100
2016; 144
2008; 56
1995
2001; 129
2008b; 134
2016; 142
2009; 137
2015; 67
2008a; 134
2010; 138
2013; 35
2000; 128
2010; 136
2007; 230
2015a; 141
1994; 99
2015b; 141
2014; 140
2008; 136
2014; 141
2009; 106
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 137
  start-page: 3420
  issue: 10
  year: 2009
  end-page: 3436
  article-title: A posteriori diagnostics in an ensemble of perturbed analyses
  publication-title: Monthly Weather Review
– volume: 100
  start-page: 781
  issue: 4
  year: 2013
  end-page: 800
  article-title: Bridging the ensemble Kalman and particle filters
  publication-title: Biometrika
– volume: 136
  start-page: 3363
  issue: 9
  year: 2008
  end-page: 3373
  article-title: An ensemble‐based four‐dimensional variational data assimilation scheme. PartI: Technical formulation and preliminary test
  publication-title: Monthly Weather Review
– volume: 230
  start-page: 99
  issue: 1
  year: 2007
  end-page: 111
  article-title: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter
  publication-title: Physica D
– volume: 140
  start-page: 2420
  year: 2014
  end-page: 2429
  article-title: Accounting for correlated error in the assimilation of high‐resolution sounder data
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 136
  start-page: 1991
  year: 2010
  end-page: 1999
  article-title: Nonlinear data assimilation in geosciences: an extremely efficient particle filter
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 142
  start-page: 1904
  year: 2016
  end-page: 1919
  article-title: Implicit equal‐weights particle filter
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 106
  start-page: 17 249
  year: 2009
  end-page: 17 254
  article-title: Implicit sampling for particle filters
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 129
  start-page: 123
  issue: 1
  year: 2001
  end-page: 137
  article-title: A sequential ensemble Kalman filter for atmospheric data assimilation
  publication-title: Monthly Weather Review
– volume: 141
  start-page: 1502
  issue: 690
  year: 2015b
  end-page: 1513
  article-title: A lag‐1 smoother approach to system‐error estimation: sequential method
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 61
  start-page: 72
  issue: 1
  year: 2009
  end-page: 83
  article-title: Spatially and temporally varying adaptive covariance inflation for ensemble filters
  publication-title: Tellus A
– volume: 128
  start-page: 1852
  year: 2000
  end-page: 1867
  article-title: An ensemble Kalman smoother for nonlinear dynamics
  publication-title: Monthly Weather Review
– volume: 112
  start-page: 1177
  year: 1986
  end-page: 1194
  article-title: Analysis methods for numerical weather prediction
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 138
  start-page: 1550
  issue: 5
  year: 2010
  end-page: 1566
  article-title: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: description and single‐observation experiments
  publication-title: Monthly Weather Review
– volume: 65
  start-page: 19546
  year: 2013
  article-title: Dat a assimilation with correlated observation errors: experiments with a 1‐D shallow water model
  publication-title: Tellus A
– volume: 56
  start-page: 1521
  issue: 8
  year: 2008
  end-page: 1527
  article-title: Correlated observation errors in data assimilation
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 134
  start-page: 1971
  issue: 637
  year: 2008b
  end-page: 1996
  article-title: A review of forecast‐error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast‐error covariance statistics
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 35
  start-page: A2013
  issue: 4
  year: 2013
  end-page: A2024
  article-title: A non‐parametric ensemble transform method for Bayesian inference
  publication-title: SIAM Journal of Scientific Computing
– volume: 139
  start-page: 3964
  issue: 12
  year: 2011
  end-page: 3973
  article-title: A moment matching ensemble filter for nonlinear non‐gaussian data assimilation
  publication-title: Monthly Weather Review
– volume: 131
  start-page: 3385
  issue: 613
  year: 2005
  end-page: 3396
  article-title: Diagnosis of observation‐, background‐ and analysis‐error statistics in observation space
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 99
  start-page: 10143
  year: 1994
  end-page: 10162
  article-title: Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: Journal of Geophysical Research
– year: 1995
– volume: 134
  start-page: 1951
  issue: 637
  year: 2008a
  end-page: 1970
  article-title: A review of forecast‐error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast‐error covariances
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 141
  start-page: 2917
  issue: 692
  year: 2015a
  end-page: 2922
  article-title: A complementary note to lag‐1 smoother approach to system‐error estimation: The intrinsic limitations of residual diagnostics
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 67
  start-page: 24822
  year: 2015
  article-title: The error of representation: basic understanding
  publication-title: Tellus A
– volume: 141
  start-page: 1612
  issue: 690
  year: 2014
  end-page: 1623
  article-title: Representation errors and retrievals in linear and nonlinear data assimilation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 144
  start-page: 59
  issue: 1
  year: 2016
  end-page: 76
  article-title: A localized particle filter for high‐dimensional nonlinear systems
  publication-title: Monthly Weather Review
– ident: e_1_2_6_15_1
  doi: 10.1002/qj.699
– ident: e_1_2_6_20_1
– ident: e_1_2_6_4_1
  doi: 10.1002/qj.339
– ident: e_1_2_6_13_1
  doi: 10.3402/tellusa.v67.24822
– ident: e_1_2_6_26_1
  doi: 10.1002/qj.2460
– ident: e_1_2_6_17_1
  doi: 10.1175/2011MWR3553.1
– ident: e_1_2_6_23_1
  doi: 10.1002/fld.1636
– ident: e_1_2_6_9_1
  doi: 10.1175/2009MWR2778.1
– ident: e_1_2_6_10_1
  doi: 10.1029/94JC00572
– ident: e_1_2_6_21_1
  doi: 10.1175/MWR-D-15-0163.1
– ident: e_1_2_6_28_1
  doi: 10.1002/qj.2784
– ident: e_1_2_6_25_1
  doi: 10.1002/qj.2546
– ident: e_1_2_6_5_1
  doi: 10.1002/qj.340
– ident: e_1_2_6_27_1
  doi: 10.1002/qj.2306
– ident: e_1_2_6_2_1
  doi: 10.1016/j.physd.2006.02.011
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1600-0870.2008.00361.x
– ident: e_1_2_6_19_1
  doi: 10.1002/qj.49711247414
– ident: e_1_2_6_22_1
  doi: 10.1137/130907367
– ident: e_1_2_6_6_1
  doi: 10.1175/2009MWR3157.1
– ident: e_1_2_6_12_1
  doi: 10.1093/biomet/ast020
– ident: e_1_2_6_24_1
  doi: 10.3402/tellusa.v65i0.19546
– ident: e_1_2_6_14_1
  doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
– ident: e_1_2_6_18_1
  doi: 10.1175/2008MWR2312.1
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.0909196106
– ident: e_1_2_6_8_1
  doi: 10.1256/qj.05.108
– ident: e_1_2_6_11_1
  doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
– ident: e_1_2_6_16_1
  doi: 10.1002/qj.2464
SSID ssj0005727
Score 2.3054419
Snippet A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1310
SubjectTerms Advances in Data Assimilation Methods
Data
Data assimilation
Data collection
Errors
Estimates
localization
Methods
model error covariance
non‐degeneracy
particle filter
Physics
Title Estimating model error covariances using particle filters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.3132
https://www.ncbi.nlm.nih.gov/pubmed/31031422
https://www.proquest.com/docview/2110260287
https://www.proquest.com/docview/2216771344
https://pubmed.ncbi.nlm.nih.gov/PMC6474261
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS-RAEC1WT150_c6uSi_I3DJmMp10-iiiyICyKwriJXR30joqiSYze9hfv1WdTHR2WBAPQxhSIR9V1XmvU_0K4DAMTKyTUPtaa-nznEs_MTz20dmCWz3IE7c8-uIyPr_ho9vo9l2rr0Yfoptwo8xw4zUluNL10Zto6Otjn2QHcfSlSi2CQ1dvwlGRaJu1DiNfIoxolsvSkUftcfPvoQVwuVgj-R67upfP2RrczS67qTl56k8num_-_KPo-Kn7-gqrLSRlx00MrcOXvNgA7wLRdFm5SXfWYyfPY4S27t8myFMcFwjpFvfMddJheVWVFTPlb2TeFEY1o3r6e_bSBiazY_oqX2_Bzdnp9cm537Zg8A0Jm_k6yYJYcWGH6EVhEYpHoVBCBVbHQkVZzI22kTRIs0IdcRwdrA0lmmb4C6wdbsNyURb5LrBEBkYSvdIKSeXAKpspk2UZH8gMeWfuQW_mkNS0-uTUJuM5bZSVw_T1MaUn4wHrDF8aSY5Fk72ZR9M2J-uUqC6yN6SIHvzodmM20ScSVeTlFG3CQSxoeS33YKcJgO4c1JGNZsw8EHOh0RmQUvf8nmL84BS7Yy6Iqnpw6Dz_v8tOf41o8-1jZt9hBdFb0pQR7cHypJrm-4iQJvoAlkL-88ClxF8ngQ7S
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB3xcYAL7AILAXYxEuKWkqZOHB9XCFRYigQCCYlDFDsxFFACacuBX8-Mk4YtFdJqD1EVZaK6nRnnPWf8BmDP93SoIl-5Sinp8oxLN9I8dNHZghvVziK7Pbp3Hnav-elNcFNXVdJemEofollwo8yw8zUlOC1IH3yohr48tEh3cBbmqZ-3pVOXH9JRgajbtXYCVyKQqDbM0q0H9Y2TT6IpeDldJfk3erWPn-NluB0PvKo6eWyNhqql3z5pOv7fL_sGSzUqZb-rMPoOM1m-Ak4PAXVR2nV3ts8On_qIbu3ZKsgjnBoI7OZ3zDbTYVlZFiXTxSuSb4qkAaOS-jv2XMcmM316MT9Yg-vjo6vDrlt3YXA1aZu5Kkq9MOHCdNCRwiAaD3yRiMQzKhRJkIZcKxNIjUzLVwHHCcIYX6JpiodnTOcHzOVFnm0Ai6SnJTEslSCvbJvEpIlO05S3ZYrUM3Ngf-yRWNcS5dQp4ymuxJX9-OUhpn_GAdYYPleqHNMm22OXxnVaDmJiu0jgkCU6sNtcxoSityRJnhUjtPHboaAdttyB9SoCmu-gpmy0aOaAmIiNxoDEuiev5P17K9odckFs1YE96_qvhh1fnNLH5r-Z7cBC96p3Fp-dnP_ZgkUEc1FVVbQNc8NylP1EwDRUv2xmvAOXjhIW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xkKa97Pcgg22ehHhLSVPHjh8noAI20DYNCe0liu0YylBS0nYP--u5c9JAV02aeIiiKBfFyd053-fY3wFsx5EROo11qLVWIS-4ClPDRYjOltzpfpH65dEnp-LwjB-fJ-f3Sn01-hDdgBtlhu-vKcHH1u3eiYbeXPVIdvARrHERpRTQ-9_vlKMS2VZrHSShQhzRrJelS3fbCxc_REvocnmS5H3w6r8-w2fwc97uZtLJr95sqnvmz1-Sjg96sOfwtMWk7FMTRC9gpShfQnCCcLqq_ag722F71yPEtv7oFagD7BgI6pYXzJfSYUVdVzUz1W-k3hRHE0YT6i_YuI1M5kb0W37yGs6GBz_2DsO2BkNoSNks1KmNRM6lG6AbpUMsnsQyl3nktJB5YgU32iXKIM-KdcKxe3AuVmhqcYucG7yB1bIqiw1gqYqMIn6lc2SVfZc7mxtrLe8ri8SzCGBn7pDMtALlVCfjOmuklePs5iqjNxMA6wzHjSbHssnW3KNZm5STjLgu0jfkiAF87E5jOtE_krwsqhnaxH0haX0tD2C9CYDuHlSSjYbMApALodEZkFT34plydOkluwWXxFUD2Pae_1ezs2_HtHv7f2Yf4PHX_WH25ej08yY8QSSXNlOKtmB1Ws-Kd4iWpvq9z4tbemgQzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+model+error+covariances+using+particle+filters&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Zhu%2C+Mengbin&rft.au=van+Leeuwen%2C+Peter+J.&rft.au=Zhang%2C+Weimin&rft.date=2018-04-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=144&rft.issue=713&rft.spage=1310&rft.epage=1320&rft_id=info:doi/10.1002%2Fqj.3132&rft.externalDBID=10.1002%252Fqj.3132&rft.externalDocID=QJ3132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon