Estimating model error covariances using particle filters
A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a...
Saved in:
Published in | Quarterly journal of the Royal Meteorological Society Vol. 144; no. 713; pp. 1310 - 1320 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve.
A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa.
Modelling detailed atmospheric physical processes, such as stratocumulus clouds, is extremely difficult, and present‐day parametrizations are failing. To improve the models one could add stochastic model errors. We use a fully nonlinear particle filter to estimate model error characteristics, avoiding the need also to estimate the state covariance. |
---|---|
AbstractList | A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa.A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa. A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa. A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa. A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic way opens up the possibility to use data assimilation for systematic model improvement at the level of the model equations, which would be a huge step forward. This model error covariance is perhaps the hardest covariance matrix to estimate. It represents how the missing physics and errors in parametrizations manifest themselves at the scales the model can resolve. A new element is that we use an efficient particle filter to avoid the need to estimate the error covariance of the state as well, which most other data assimilation methods do require. Starting from a reasonable first estimate, the method generates new estimates iteratively during the data assimilation run, and the method is shown to converge to the correct model error matrix. We also investigate the influence of the accuracy of the observation error covariance on the estimation of the model error covariance and show that, when the observation errors are known, the model error covariance can be estimated well, but, as expected and perhaps unavoidably, the diagonal elements are estimated too low when the observation errors are estimated too high, and vice versa. Modelling detailed atmospheric physical processes, such as stratocumulus clouds, is extremely difficult, and present‐day parametrizations are failing. To improve the models one could add stochastic model errors. We use a fully nonlinear particle filter to estimate model error characteristics, avoiding the need also to estimate the state covariance. |
Author | Zhang, Weimin van Leeuwen, Peter J. Zhu, Mengbin |
AuthorAffiliation | 2 Department of Meteorology University of Reading UK 1 Academy of Ocean Science and Engineering, National University of Defense Technology Changsha China 3 National Centre for Earth Observation, University of Reading UK |
AuthorAffiliation_xml | – name: 3 National Centre for Earth Observation, University of Reading UK – name: 1 Academy of Ocean Science and Engineering, National University of Defense Technology Changsha China – name: 2 Department of Meteorology University of Reading UK |
Author_xml | – sequence: 1 givenname: Mengbin surname: Zhu fullname: Zhu, Mengbin organization: Academy of Ocean Science and Engineering, National University of Defense Technology – sequence: 2 givenname: Peter J. surname: van Leeuwen fullname: van Leeuwen, Peter J. email: p.j.vanleeuwen@reading.ac.uk organization: National Centre for Earth Observation, University of Reading – sequence: 3 givenname: Weimin surname: Zhang fullname: Zhang, Weimin organization: Academy of Ocean Science and Engineering, National University of Defense Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31031422$$D View this record in MEDLINE/PubMed |
BookMark | eNp10VtLHDEUB_AgFl0v-A3KQB8UyujJSWay8yKIaC8IIij4FjKZRLNkJ7vJjMVv32xXpUr7EPJwfvw5lx2y2YfeEHJA4ZgC4Mlydswoww0yoVyIcirgfpNMAFhVNgDNNtlJaQYAlUCxRbYZBUY54oQ0F2lwczW4_qGYh874wsQYYqHDk4pO9dqkYkyr6kLFwWlvCuv8YGLaI5-s8snsv_y75O7y4vb8e3l1_e3H-dlVqTljWLbTDmrFhWWGN8IKgRUKJRTYthaq6mquW1s1mjcVthVniNZik2mXH1jLdsnpOncxtnPTadMPUXm5iLnt-CyDcvJ9pXeP8iE8yZoLjjXNAUcvATEsR5MGOXdJG-9Vb8KYJCKthaCM80y_fKCzMMY-jyeRUsAacCqy-vx3R2-tvG41g8M10DGkFI19IxTk6l5yOZOre2VZfpDaDfkaYTWK8__wX9f-l_Pm-X-x8ubnH_0b6U6jbQ |
CitedBy_id | crossref_primary_10_1002_qj_3382 crossref_primary_10_1029_2018WR023629 crossref_primary_10_1029_2021MS002564 crossref_primary_10_1137_19M1297300 crossref_primary_10_16993_tellusa_55 crossref_primary_10_1002_qj_3378 crossref_primary_10_1002_qj_3798 crossref_primary_10_1016_j_asoc_2019_105624 crossref_primary_10_1016_j_apm_2021_11_006 crossref_primary_10_1002_qj_3824 |
Cites_doi | 10.1002/qj.699 10.1002/qj.339 10.3402/tellusa.v67.24822 10.1002/qj.2460 10.1175/2011MWR3553.1 10.1002/fld.1636 10.1175/2009MWR2778.1 10.1029/94JC00572 10.1175/MWR-D-15-0163.1 10.1002/qj.2784 10.1002/qj.2546 10.1002/qj.340 10.1002/qj.2306 10.1016/j.physd.2006.02.011 10.1111/j.1600-0870.2008.00361.x 10.1002/qj.49711247414 10.1137/130907367 10.1175/2009MWR3157.1 10.1093/biomet/ast020 10.3402/tellusa.v65i0.19546 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 10.1175/2008MWR2312.1 10.1073/pnas.0909196106 10.1256/qj.05.108 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2 10.1002/qj.2464 |
ContentType | Journal Article |
Copyright | 2017 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. 2018 Royal Meteorological Society |
Copyright_xml | – notice: 2017 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. – notice: 2018 Royal Meteorological Society |
DBID | 24P AAYXX CITATION NPM 7TG 7TN F1W H96 KL. L.G 7X8 5PM |
DOI | 10.1002/qj.3132 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Physics |
DocumentTitleAlternate | Estimating Model Error Covariance Using Implicit Equal‐Weights Particle Filter |
EISSN | 1477-870X |
EndPage | 1320 |
ExternalDocumentID | PMC6474261 31031422 10_1002_qj_3132 QJ3132 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) funderid: 41375113; 41475094; 41675097 – fundername: European Union's Horizon 2020 research and innovation programme – fundername: European Research Council (ERC) – fundername: National Natural Science Foundation of China (NSFC) grantid: 41375113; 41475094; 41675097 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 VOH W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XOL XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7TG 7TN AAMMB AEFGJ AGXDD AIDQK AIDYY F1W H96 KL. L.G 7X8 5PM |
ID | FETCH-LOGICAL-c4332-b8d06a47f3e497f772527a7a0fb67a5d64cbf59c4952b54322ff29497d4970ff3 |
IEDL.DBID | DR2 |
ISSN | 0035-9009 |
IngestDate | Thu Aug 21 13:46:14 EDT 2025 Fri Jul 11 05:00:33 EDT 2025 Fri Jul 25 10:29:00 EDT 2025 Wed Feb 19 02:33:21 EST 2025 Tue Jul 01 00:43:52 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Wed Jan 22 16:24:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 713 |
Keywords | localization non‐degeneracy particle filter model error covariance |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4332-b8d06a47f3e497f772527a7a0fb67a5d64cbf59c4952b54322ff29497d4970ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.3132 |
PMID | 31031422 |
PQID | 2110260287 |
PQPubID | 1016432 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6474261 proquest_miscellaneous_2216771344 proquest_journals_2110260287 pubmed_primary_31031422 crossref_primary_10_1002_qj_3132 crossref_citationtrail_10_1002_qj_3132 wiley_primary_10_1002_qj_3132_QJ3132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2018 Part B |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 Part B |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: Reading |
PublicationTitle | Quarterly journal of the Royal Meteorological Society |
PublicationTitleAlternate | Q J R Meteorol Soc |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2005; 131 2011; 139 2013; 65 2009; 61 1986; 112 2013; 100 2016; 144 2008; 56 1995 2001; 129 2008b; 134 2016; 142 2009; 137 2015; 67 2008a; 134 2010; 138 2013; 35 2000; 128 2010; 136 2007; 230 2015a; 141 1994; 99 2015b; 141 2014; 140 2008; 136 2014; 141 2009; 106 e_1_2_6_10_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 137 start-page: 3420 issue: 10 year: 2009 end-page: 3436 article-title: A posteriori diagnostics in an ensemble of perturbed analyses publication-title: Monthly Weather Review – volume: 100 start-page: 781 issue: 4 year: 2013 end-page: 800 article-title: Bridging the ensemble Kalman and particle filters publication-title: Biometrika – volume: 136 start-page: 3363 issue: 9 year: 2008 end-page: 3373 article-title: An ensemble‐based four‐dimensional variational data assimilation scheme. PartI: Technical formulation and preliminary test publication-title: Monthly Weather Review – volume: 230 start-page: 99 issue: 1 year: 2007 end-page: 111 article-title: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter publication-title: Physica D – volume: 140 start-page: 2420 year: 2014 end-page: 2429 article-title: Accounting for correlated error in the assimilation of high‐resolution sounder data publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 136 start-page: 1991 year: 2010 end-page: 1999 article-title: Nonlinear data assimilation in geosciences: an extremely efficient particle filter publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 142 start-page: 1904 year: 2016 end-page: 1919 article-title: Implicit equal‐weights particle filter publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 106 start-page: 17 249 year: 2009 end-page: 17 254 article-title: Implicit sampling for particle filters publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 129 start-page: 123 issue: 1 year: 2001 end-page: 137 article-title: A sequential ensemble Kalman filter for atmospheric data assimilation publication-title: Monthly Weather Review – volume: 141 start-page: 1502 issue: 690 year: 2015b end-page: 1513 article-title: A lag‐1 smoother approach to system‐error estimation: sequential method publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 61 start-page: 72 issue: 1 year: 2009 end-page: 83 article-title: Spatially and temporally varying adaptive covariance inflation for ensemble filters publication-title: Tellus A – volume: 128 start-page: 1852 year: 2000 end-page: 1867 article-title: An ensemble Kalman smoother for nonlinear dynamics publication-title: Monthly Weather Review – volume: 112 start-page: 1177 year: 1986 end-page: 1194 article-title: Analysis methods for numerical weather prediction publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 138 start-page: 1550 issue: 5 year: 2010 end-page: 1566 article-title: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: description and single‐observation experiments publication-title: Monthly Weather Review – volume: 65 start-page: 19546 year: 2013 article-title: Dat a assimilation with correlated observation errors: experiments with a 1‐D shallow water model publication-title: Tellus A – volume: 56 start-page: 1521 issue: 8 year: 2008 end-page: 1527 article-title: Correlated observation errors in data assimilation publication-title: International Journal for Numerical Methods in Fluids – volume: 134 start-page: 1971 issue: 637 year: 2008b end-page: 1996 article-title: A review of forecast‐error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast‐error covariance statistics publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 35 start-page: A2013 issue: 4 year: 2013 end-page: A2024 article-title: A non‐parametric ensemble transform method for Bayesian inference publication-title: SIAM Journal of Scientific Computing – volume: 139 start-page: 3964 issue: 12 year: 2011 end-page: 3973 article-title: A moment matching ensemble filter for nonlinear non‐gaussian data assimilation publication-title: Monthly Weather Review – volume: 131 start-page: 3385 issue: 613 year: 2005 end-page: 3396 article-title: Diagnosis of observation‐, background‐ and analysis‐error statistics in observation space publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 99 start-page: 10143 year: 1994 end-page: 10162 article-title: Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics publication-title: Journal of Geophysical Research – year: 1995 – volume: 134 start-page: 1951 issue: 637 year: 2008a end-page: 1970 article-title: A review of forecast‐error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast‐error covariances publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 141 start-page: 2917 issue: 692 year: 2015a end-page: 2922 article-title: A complementary note to lag‐1 smoother approach to system‐error estimation: The intrinsic limitations of residual diagnostics publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 67 start-page: 24822 year: 2015 article-title: The error of representation: basic understanding publication-title: Tellus A – volume: 141 start-page: 1612 issue: 690 year: 2014 end-page: 1623 article-title: Representation errors and retrievals in linear and nonlinear data assimilation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 144 start-page: 59 issue: 1 year: 2016 end-page: 76 article-title: A localized particle filter for high‐dimensional nonlinear systems publication-title: Monthly Weather Review – ident: e_1_2_6_15_1 doi: 10.1002/qj.699 – ident: e_1_2_6_20_1 – ident: e_1_2_6_4_1 doi: 10.1002/qj.339 – ident: e_1_2_6_13_1 doi: 10.3402/tellusa.v67.24822 – ident: e_1_2_6_26_1 doi: 10.1002/qj.2460 – ident: e_1_2_6_17_1 doi: 10.1175/2011MWR3553.1 – ident: e_1_2_6_23_1 doi: 10.1002/fld.1636 – ident: e_1_2_6_9_1 doi: 10.1175/2009MWR2778.1 – ident: e_1_2_6_10_1 doi: 10.1029/94JC00572 – ident: e_1_2_6_21_1 doi: 10.1175/MWR-D-15-0163.1 – ident: e_1_2_6_28_1 doi: 10.1002/qj.2784 – ident: e_1_2_6_25_1 doi: 10.1002/qj.2546 – ident: e_1_2_6_5_1 doi: 10.1002/qj.340 – ident: e_1_2_6_27_1 doi: 10.1002/qj.2306 – ident: e_1_2_6_2_1 doi: 10.1016/j.physd.2006.02.011 – ident: e_1_2_6_3_1 doi: 10.1111/j.1600-0870.2008.00361.x – ident: e_1_2_6_19_1 doi: 10.1002/qj.49711247414 – ident: e_1_2_6_22_1 doi: 10.1137/130907367 – ident: e_1_2_6_6_1 doi: 10.1175/2009MWR3157.1 – ident: e_1_2_6_12_1 doi: 10.1093/biomet/ast020 – ident: e_1_2_6_24_1 doi: 10.3402/tellusa.v65i0.19546 – ident: e_1_2_6_14_1 doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 – ident: e_1_2_6_18_1 doi: 10.1175/2008MWR2312.1 – ident: e_1_2_6_7_1 doi: 10.1073/pnas.0909196106 – ident: e_1_2_6_8_1 doi: 10.1256/qj.05.108 – ident: e_1_2_6_11_1 doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2 – ident: e_1_2_6_16_1 doi: 10.1002/qj.2464 |
SSID | ssj0005727 |
Score | 2.3054419 |
Snippet | A method is presented for estimating the error covariance of the errors in the model equations in observation space. Estimating model errors in this systematic... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1310 |
SubjectTerms | Advances in Data Assimilation Methods Data Data assimilation Data collection Errors Estimates localization Methods model error covariance non‐degeneracy particle filter Physics |
Title | Estimating model error covariances using particle filters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.3132 https://www.ncbi.nlm.nih.gov/pubmed/31031422 https://www.proquest.com/docview/2110260287 https://www.proquest.com/docview/2216771344 https://pubmed.ncbi.nlm.nih.gov/PMC6474261 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS-RAEC1WT150_c6uSi_I3DJmMp10-iiiyICyKwriJXR30joqiSYze9hfv1WdTHR2WBAPQxhSIR9V1XmvU_0K4DAMTKyTUPtaa-nznEs_MTz20dmCWz3IE7c8-uIyPr_ho9vo9l2rr0Yfoptwo8xw4zUluNL10Zto6Otjn2QHcfSlSi2CQ1dvwlGRaJu1DiNfIoxolsvSkUftcfPvoQVwuVgj-R67upfP2RrczS67qTl56k8num_-_KPo-Kn7-gqrLSRlx00MrcOXvNgA7wLRdFm5SXfWYyfPY4S27t8myFMcFwjpFvfMddJheVWVFTPlb2TeFEY1o3r6e_bSBiazY_oqX2_Bzdnp9cm537Zg8A0Jm_k6yYJYcWGH6EVhEYpHoVBCBVbHQkVZzI22kTRIs0IdcRwdrA0lmmb4C6wdbsNyURb5LrBEBkYSvdIKSeXAKpspk2UZH8gMeWfuQW_mkNS0-uTUJuM5bZSVw_T1MaUn4wHrDF8aSY5Fk72ZR9M2J-uUqC6yN6SIHvzodmM20ScSVeTlFG3CQSxoeS33YKcJgO4c1JGNZsw8EHOh0RmQUvf8nmL84BS7Yy6Iqnpw6Dz_v8tOf41o8-1jZt9hBdFb0pQR7cHypJrm-4iQJvoAlkL-88ClxF8ngQ7S |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB3xcYAL7AILAXYxEuKWkqZOHB9XCFRYigQCCYlDFDsxFFACacuBX8-Mk4YtFdJqD1EVZaK6nRnnPWf8BmDP93SoIl-5Sinp8oxLN9I8dNHZghvVziK7Pbp3Hnav-elNcFNXVdJemEofollwo8yw8zUlOC1IH3yohr48tEh3cBbmqZ-3pVOXH9JRgajbtXYCVyKQqDbM0q0H9Y2TT6IpeDldJfk3erWPn-NluB0PvKo6eWyNhqql3z5pOv7fL_sGSzUqZb-rMPoOM1m-Ak4PAXVR2nV3ts8On_qIbu3ZKsgjnBoI7OZ3zDbTYVlZFiXTxSuSb4qkAaOS-jv2XMcmM316MT9Yg-vjo6vDrlt3YXA1aZu5Kkq9MOHCdNCRwiAaD3yRiMQzKhRJkIZcKxNIjUzLVwHHCcIYX6JpiodnTOcHzOVFnm0Ai6SnJTEslSCvbJvEpIlO05S3ZYrUM3Ngf-yRWNcS5dQp4ymuxJX9-OUhpn_GAdYYPleqHNMm22OXxnVaDmJiu0jgkCU6sNtcxoSityRJnhUjtPHboaAdttyB9SoCmu-gpmy0aOaAmIiNxoDEuiev5P17K9odckFs1YE96_qvhh1fnNLH5r-Z7cBC96p3Fp-dnP_ZgkUEc1FVVbQNc8NylP1EwDRUv2xmvAOXjhIW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xkKa97Pcgg22ehHhLSVPHjh8noAI20DYNCe0liu0YylBS0nYP--u5c9JAV02aeIiiKBfFyd053-fY3wFsx5EROo11qLVWIS-4ClPDRYjOltzpfpH65dEnp-LwjB-fJ-f3Sn01-hDdgBtlhu-vKcHH1u3eiYbeXPVIdvARrHERpRTQ-9_vlKMS2VZrHSShQhzRrJelS3fbCxc_REvocnmS5H3w6r8-w2fwc97uZtLJr95sqnvmz1-Sjg96sOfwtMWk7FMTRC9gpShfQnCCcLqq_ag722F71yPEtv7oFagD7BgI6pYXzJfSYUVdVzUz1W-k3hRHE0YT6i_YuI1M5kb0W37yGs6GBz_2DsO2BkNoSNks1KmNRM6lG6AbpUMsnsQyl3nktJB5YgU32iXKIM-KdcKxe3AuVmhqcYucG7yB1bIqiw1gqYqMIn6lc2SVfZc7mxtrLe8ri8SzCGBn7pDMtALlVCfjOmuklePs5iqjNxMA6wzHjSbHssnW3KNZm5STjLgu0jfkiAF87E5jOtE_krwsqhnaxH0haX0tD2C9CYDuHlSSjYbMApALodEZkFT34plydOkluwWXxFUD2Pae_1ezs2_HtHv7f2Yf4PHX_WH25ej08yY8QSSXNlOKtmB1Ws-Kd4iWpvq9z4tbemgQzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+model+error+covariances+using+particle+filters&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Zhu%2C+Mengbin&rft.au=van+Leeuwen%2C+Peter+J.&rft.au=Zhang%2C+Weimin&rft.date=2018-04-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=144&rft.issue=713&rft.spage=1310&rft.epage=1320&rft_id=info:doi/10.1002%2Fqj.3132&rft.externalDBID=10.1002%252Fqj.3132&rft.externalDocID=QJ3132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon |