Bioavailability of dietary polyphenols: Factors contributing to their clinical application in CNS diseases

The anatomical location of the central nervous system (CNS) renders it immunologically and pharmacologically privileged due to the blood brain barrier (BBB). Although this limits the transport of unfavorable molecules to the CNS, the ensuing privilege could be disadvantageous for therapeutic compoun...

Full description

Saved in:
Bibliographic Details
Published inNeurochemistry international Vol. 89; pp. 198 - 208
Main Authors Pandareesh, M.D., Mythri, R.B., Srinivas Bharath, M.M.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The anatomical location of the central nervous system (CNS) renders it immunologically and pharmacologically privileged due to the blood brain barrier (BBB). Although this limits the transport of unfavorable molecules to the CNS, the ensuing privilege could be disadvantageous for therapeutic compounds. Hence, the greatest challenge in the pharmacotherapy of CNS diseases is to ensure efficient brain targeting and drug delivery. Research evidences indicate that dietary polyphenols have neuroprotective potential against CNS diseases. However, their selective permeability across BBB, poor absorption, rapid metabolism and systemic elimination limit their bioavailability and therapeutic efficacy. Consequently, the beneficial effects of these orally administered agents in the CNS still remain a subject of debate. This has also limited its clinical application either as independent or adjunctive therapy. Improving the in vivo bioavailability by novel methods could improve the therapeutic feasibility of polyphenols and assist in evolving novel drugs and their derivatives with improved efficacy in vivo. Here we review the mechanistic and pharmacological issues related to the bioavailability of polyphenols with therapeutic implications for CNS diseases. We surmise that improving the bioavailability of polyphenols entails efficient in vivo transport across BBB, biochemical stability, improved half-life and persistent neuroprotection in the CNS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0197-0186
1872-9754
1872-9754
DOI:10.1016/j.neuint.2015.07.003