The Interaction Between MiR-141 and lncRNA-H19 in Regulating Cell Proliferation and Migration in Gastric Cancer

Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated...

Full description

Saved in:
Bibliographic Details
Published inCellular physiology and biochemistry Vol. 36; no. 4; pp. 1440 - 1452
Main Authors Zhou, Xiaoying, Ye, Feng, Yin, Chengqiang, Zhuang, Ya, Yue, Ge, Zhang, Guoxin
Format Journal Article
LanguageEnglish
Published Basel, Switzerland Cell Physiol Biochem Press GmbH & Co KG 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study. Methods: H19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro. Results: H19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1. Conclusion: These results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer.
AbstractList Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study. Methods: H19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro. Results: H19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1. Conclusion: These results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer.
BACKGROUND/AIMSNon-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study.METHODSH19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro.RESULTSH19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1.CONCLUSIONThese results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer.
Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study. H19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro. H19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1. These results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer.
Author Yin, Chengqiang
Zhou, Xiaoying
Zhuang, Ya
Yue, Ge
Zhang, Guoxin
Ye, Feng
Author_xml – sequence: 1
  givenname: Xiaoying
  surname: Zhou
  fullname: Zhou, Xiaoying
  email: guoxinz@njmu.edu.cn
– sequence: 2
  givenname: Feng
  surname: Ye
  fullname: Ye, Feng
– sequence: 3
  givenname: Chengqiang
  surname: Yin
  fullname: Yin, Chengqiang
– sequence: 4
  givenname: Ya
  surname: Zhuang
  fullname: Zhuang, Ya
– sequence: 5
  givenname: Ge
  surname: Yue
  fullname: Yue, Ge
– sequence: 6
  givenname: Guoxin
  surname: Zhang
  fullname: Zhang, Guoxin
  email: guoxinz@njmu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26160158$$D View this record in MEDLINE/PubMed
BookMark eNptkU1v1DAQhi1URD_gwB2hSFzgEOqvxPGxjUq7UgvVau-W44wXl6y9OF4h_n29myUH1JP9zjzzjmbmHJ344AGh9wR_JaSSlxhjzjDD8hU6I5ySUgrRnOQ_JlXZyEacovNxfMJZCknfoFNakzqL5gyF1U8oFj5B1Ca54ItrSH8AfPHgliXhpNC-LwZvlt-vyjsiC-eLJax3g07Or4sWhqF4jGFwNhsc6vf8g1sfVcZv9ZiiM0WrvYH4Fr22ehjh3fG9QKtvN6v2rrz_cbtor-5LwxlNJQiMdS-g5tDoSmJWEVnzurM1bQizfSW1tKaRtKJgubGM4q7iOMcqEIyxC7SYbPugn9Q2uo2Of1XQTh0CIa6VjsmZAZSwXHd5SZJh4LjTndDZG3NqZNf33d7r8-S1jeH3DsakNm40eXLtIexGRQSVLDevSEY_HtFdt4F-bvxv3xn4MgEmhnGMYGeEYLW_pZpvmdnL_1jj0mGtKWo3vFjxYar4peMa4uw9pz-9mG4frydCbXvLngGs8bG-
CitedBy_id crossref_primary_10_1016_j_gene_2018_11_034
crossref_primary_10_1155_2017_4723193
crossref_primary_10_1155_2021_7107705
crossref_primary_10_1007_s13277_015_3924_y
crossref_primary_10_1038_s41420_018_0051_8
crossref_primary_10_3390_ijerph18062862
crossref_primary_10_1007_s10863_020_09844_6
crossref_primary_10_1002_cbf_3785
crossref_primary_10_1016_j_gendis_2021_08_012
crossref_primary_10_3727_096504018X15178768577951
crossref_primary_10_1016_j_flm_2017_12_002
crossref_primary_10_3892_ol_2018_9832
crossref_primary_10_1016_j_artmed_2017_02_001
crossref_primary_10_1007_s12033_024_01343_y
crossref_primary_10_1007_s12035_020_02165_0
crossref_primary_10_1016_j_abb_2016_09_014
crossref_primary_10_3892_mmr_2018_9567
crossref_primary_10_1155_2024_6217134
crossref_primary_10_1007_s11010_019_03564_1
crossref_primary_10_3934_molsci_2016_2_104
crossref_primary_10_3390_ncrna4020014
crossref_primary_10_3390_ijms17030356
crossref_primary_10_1016_j_bbrc_2016_09_028
crossref_primary_10_18632_oncotarget_6926
crossref_primary_10_1007_s10753_019_01141_8
crossref_primary_10_1515_hsz_2021_0316
crossref_primary_10_1002_jcp_28594
crossref_primary_10_1016_j_neuint_2022_105347
crossref_primary_10_1007_s12041_019_1126_x
crossref_primary_10_1016_j_jare_2020_03_010
crossref_primary_10_1007_s00011_018_1170_7
crossref_primary_10_3389_fgene_2021_607748
crossref_primary_10_1002_jcb_28078
crossref_primary_10_18632_aging_103876
crossref_primary_10_1007_s11255_018_1938_2
crossref_primary_10_1080_15384101_2020_1812918
crossref_primary_10_1016_j_ncrna_2024_03_013
crossref_primary_10_1007_s00404_022_06423_5
crossref_primary_10_3892_mmr_2017_7029
crossref_primary_10_1016_j_gendis_2023_02_008
crossref_primary_10_1002_jcp_27656
crossref_primary_10_3727_096504018X15201143705855
crossref_primary_10_1007_s10238_022_00947_5
crossref_primary_10_1007_s13277_015_4749_4
crossref_primary_10_1016_j_ncrna_2016_10_001
crossref_primary_10_3390_cancers12102741
crossref_primary_10_1038_onc_2017_133
crossref_primary_10_1186_s12935_020_01369_7
crossref_primary_10_34172_ajmb_2019_06
crossref_primary_10_1016_j_trim_2021_101526
crossref_primary_10_1038_cddis_2016_149
crossref_primary_10_3390_cancers9040038
crossref_primary_10_1007_s13277_016_4852_1
crossref_primary_10_1080_15384101_2018_1496741
crossref_primary_10_1111_cas_14896
crossref_primary_10_1016_j_biopha_2018_06_007
crossref_primary_10_18632_oncotarget_23960
crossref_primary_10_1002_1873_3468_12171
crossref_primary_10_1007_s12539_019_00319_w
crossref_primary_10_3390_genes10070506
crossref_primary_10_1016_j_yexmp_2019_104365
crossref_primary_10_1016_j_etap_2024_104623
crossref_primary_10_1016_j_knosys_2019_105261
crossref_primary_10_1016_j_mgene_2017_07_004
crossref_primary_10_1159_000518756
crossref_primary_10_2174_1573394718666220413124759
crossref_primary_10_3389_fonc_2021_628027
crossref_primary_10_1186_s12977_024_00637_y
crossref_primary_10_1002_jcp_28714
crossref_primary_10_1038_cddis_2016_64
crossref_primary_10_1016_j_micpath_2020_104442
crossref_primary_10_1007_s12013_024_01290_0
crossref_primary_10_3892_or_2016_4929
crossref_primary_10_1016_j_ejso_2017_06_013
crossref_primary_10_1016_j_lfs_2023_122316
crossref_primary_10_1002_jcp_29260
crossref_primary_10_1038_s41598_023_35639_x
crossref_primary_10_18632_aging_101999
crossref_primary_10_1002_cbf_4072
crossref_primary_10_1002_jcb_29308
crossref_primary_10_1002_jcb_25867
crossref_primary_10_1002_jcb_25988
crossref_primary_10_18632_oncotarget_13076
crossref_primary_10_1007_s00018_019_03240_z
crossref_primary_10_1016_j_biopha_2019_109774
crossref_primary_10_1002_cbin_10960
crossref_primary_10_1038_s41598_023_43744_0
crossref_primary_10_1016_j_yexcr_2019_05_010
crossref_primary_10_3389_fimmu_2024_1406538
crossref_primary_10_1111_jcmm_14102
crossref_primary_10_1093_gastro_goab050
crossref_primary_10_1042_CS20171588
crossref_primary_10_3892_ijmm_2019_4221
crossref_primary_10_1007_s10620_020_06581_z
crossref_primary_10_1155_2021_6911734
crossref_primary_10_18632_oncotarget_11128
crossref_primary_10_1002_ijc_32277
crossref_primary_10_3892_etm_2018_7142
crossref_primary_10_1016_j_critrevonc_2018_03_028
crossref_primary_10_1186_s12890_020_01218_3
crossref_primary_10_3390_ijms22115683
crossref_primary_10_3390_ncrna4040040
crossref_primary_10_3389_fgene_2022_833857
crossref_primary_10_1016_j_bbamcr_2017_08_001
crossref_primary_10_2147_OTT_S251231
crossref_primary_10_1002_jcb_29006
crossref_primary_10_1186_s12957_021_02274_7
crossref_primary_10_3390_cells11010073
crossref_primary_10_1038_s12276_023_00926_0
crossref_primary_10_1016_j_cancergen_2023_12_006
crossref_primary_10_2147_OTT_S247776
crossref_primary_10_18632_oncotarget_13012
crossref_primary_10_1016_j_biopha_2018_10_096
crossref_primary_10_2147_CMAR_S254944
crossref_primary_10_2147_PGPM_S304524
crossref_primary_10_18632_oncotarget_22555
crossref_primary_10_3390_ijms241411861
crossref_primary_10_1016_j_ncrna_2018_10_001
crossref_primary_10_1002_cbf_4018
crossref_primary_10_1016_j_semcancer_2020_12_012
crossref_primary_10_1186_s12935_018_0544_9
crossref_primary_10_1002_jcb_29332
crossref_primary_10_1002_jcb_29058
crossref_primary_10_3892_mmr_2018_8782
crossref_primary_10_1007_s00018_017_2626_6
crossref_primary_10_4251_wjgo_v10_i9_260
crossref_primary_10_1007_s00253_019_09837_5
crossref_primary_10_2174_1871530319666190904161707
crossref_primary_10_3892_ol_2018_9187
crossref_primary_10_3892_or_2017_5751
crossref_primary_10_2174_0113816128277350231219062154
crossref_primary_10_1038_s41420_024_02275_x
crossref_primary_10_3390_ijms22179165
crossref_primary_10_1158_1541_7786_MCR_22_0134
crossref_primary_10_1371_journal_pone_0267798
crossref_primary_10_18632_oncotarget_7578
crossref_primary_10_1016_j_ygeno_2018_12_009
crossref_primary_10_1155_2020_1767056
crossref_primary_10_1007_s11033_017_4103_6
crossref_primary_10_3389_fgene_2020_598773
crossref_primary_10_3390_cells8101207
crossref_primary_10_3390_ijms18020450
crossref_primary_10_1016_j_omtn_2018_05_024
crossref_primary_10_18632_oncotarget_13957
crossref_primary_10_1371_journal_pone_0171661
crossref_primary_10_1089_dna_2015_3171
crossref_primary_10_1007_s11064_019_02789_2
crossref_primary_10_1007_s10571_015_0320_5
crossref_primary_10_1016_j_phrs_2020_104683
crossref_primary_10_1159_000506291
crossref_primary_10_3892_ijo_2016_3407
crossref_primary_10_1186_s12885_024_13209_2
ContentType Journal Article
Copyright 2015 S. Karger AG, Basel
2015 S. Karger AG, Basel.
Copyright_xml – notice: 2015 S. Karger AG, Basel
– notice: 2015 S. Karger AG, Basel.
DBID M--
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1159/000430309
DatabaseName Karger Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1421-9778
EndPage 1452
ExternalDocumentID oai_doaj_org_article_7f4ab898930e40bab7aa9f042c9bddb3
26160158
10_1159_000430309
430309
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
0~B
29B
30W
326
36B
3O.
4.4
53G
5GY
5VS
6J9
8UI
AAFWJ
AAYIC
ACGFO
ACGFS
ADBBV
AENEX
AEYAO
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
CS3
CYUIP
DIK
DU5
E0A
E3Z
EBS
EJD
EMB
EMOBN
F5P
FB.
GROUPED_DOAJ
HZ~
IAO
IHR
IPNFZ
KQ8
KUZGX
M--
ML-
N9A
O1H
O9-
OK1
P2P
RIG
RKO
RNS
SV3
UJ6
7X7
88E
8FI
8FJ
AAYXX
ABBTS
ABUWG
ABWCG
ACQXL
ADAGL
AFKRA
AFSIO
AHFRZ
AIOBO
BENPR
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
FYUFA
HMCUK
ITC
M1P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RXVBD
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c432t-e700ad7e64e8a5903519646bf62813fd59a9fc89252ef4cf320b5409fc5e7333
IEDL.DBID DOA
ISSN 1015-8987
IngestDate Wed Aug 27 01:19:37 EDT 2025
Fri Jul 11 00:40:23 EDT 2025
Wed Feb 19 02:35:05 EST 2025
Thu Apr 24 22:59:32 EDT 2025
Tue Jul 01 05:08:47 EDT 2025
Thu Aug 29 12:04:18 EDT 2024
Thu Sep 05 18:04:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords H19
MiR-141
Proliferation
Gastric cancer
Migration
Language English
License Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC)
applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.
https://creativecommons.org/licenses/by-nc/3.0
2015 S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-e700ad7e64e8a5903519646bf62813fd59a9fc89252ef4cf320b5409fc5e7333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/7f4ab898930e40bab7aa9f042c9bddb3
PMID 26160158
PQID 1729354051
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_26160158
proquest_miscellaneous_1729354051
crossref_primary_10_1159_000430309
crossref_citationtrail_10_1159_000430309
karger_primary_430309
doaj_primary_oai_doaj_org_article_7f4ab898930e40bab7aa9f042c9bddb3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Germany
PublicationTitle Cellular physiology and biochemistry
PublicationTitleAlternate Cell Physiol Biochem
PublicationYear 2015
Publisher Cell Physiol Biochem Press GmbH & Co KG
Publisher_xml – name: Cell Physiol Biochem Press GmbH & Co KG
References Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, Kwok TT: Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31:350-358.1992663810.1093/carcin/bgp181
Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ, Millikan RC: FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 2010;31:1417-1423.2055474910.1093/carcin/bgq128
Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I: A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 2014;53:506-514.2444050310.1016/j.molcel.2013.12.012
Zuo QF, Zhang R, Li BS, Zhao YL, Zhuang Y, Yu T, Gong L, Li S, Xiao B, Zou QM: MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis 2015;6: e1623.2563329210.1038/cddis.2014.573
Chiu HS, Llobet-Navas D, Yang X, Chung WJ, Ambesi-Impiombato A, Iyer A, Kim HR, Seviour EG, Luo Z, Sehgal V, Moss T, Lu Y, Ram P, Silva J, Mills GB, Califano A, Sumazin P: Cupid simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 2015;25:257-267.2537824910.1101/gr.178194.114
Wang QX, Zhu YQ, Zhang H, Xiao J: Altered MiRNA expression in gastric cancer: a systematic review and meta-analysis. Cell Physiol Biochem 2015;35:933-944.2563374710.1159/000369750
Zhang D, Xiao YF, Zhang JW, Xie R, Hu CJ, Tang B, Wang SM, Wu YY, Hao NB, Yang SM: miR-1182 attenuates gastric cancer proliferation and metastasis by targeting the open reading frame of hTERT. Cancer Lett 2015;360:151-159.2566244110.1016/j.canlet.2015.01.044
Zhou X, Xia Y, Su J, Zhang G: Down-regulation of miR-141 induced by helicobacter pylori promotes the invasion of gastric cancer by targeting STAT4. Cell Physiol Biochem 2014;33:1003-1012.2473237710.1159/000358671
Cui Y, Chen J, He Z, Xiao Y: SUZ12 depletion suppresses the proliferation of gastric cancer cells. Cell Physiol Biochem 2013;31:778-784.2373584010.1159/000350095
Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 2013;333:213-221.2335459110.1016/j.canlet.2013.01.033
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465:1033-1038.2057720610.1038/nature09144
Jia W, Chen W, Kang J: The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells. Genomics Proteomics Bioinformatics 2013;11:275-283.2409612910.1016/j.gpb.2013.09.004
Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, Oshima H, Oshima M, Lee HJ, Kim VN, Chang AN, Goel A, Yang HK: MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut 2015;64:203-214.2487062010.1136/gutjnl-2013-306640
Mei Z, He Y, Feng J, Shi J, Du Y, Qian L, Huang Q Jie Z: MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2. FEBS Lett 2014;588:3055-3061.2494573110.1016/j.febslet.2014.06.020
Koutsaki M, Spandidos DA, Zaravinos A: Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 2014;351:173-181.2495225810.1016/j.canlet.2014.05.022
Kim EJ, Baik GH: Review on gastric mucosal microbiota profiling differences in patients with chronic gastritis, intestinal metaplasia, and gastric cancer. Korean J Gastroenterol 2014;64:390-393.2567554310.4166/kjg.2014.64.6.390
Bierhoff H, Postepska-Igielska A, Grummt I: Noisy silence: non-coding RNA and heterochromatin formation at repetitive elements. Epigenetics 2014;9:53-61.2412153910.4161/epi.26485
Ørom UA, Shiekhattar R: Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 2013;154:1190-1193.2403424310.1016/j.cell.2013.08.028
Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894-907.1838189310.1101/gad.1640608
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y: The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 2013;52:101-112.2405534210.1016/j.molcel.2013.08.027
Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y: Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 2014;9:e86295.2446601110.1371/journal.pone.0086295
Shi X, Sun M, Liu H, Yao Y, Song Y: Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 2013;339:159-166.2379188410.1016/j.canlet.2013.06.013
Paci P, Colombo T, Farina L: Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 2014;8:83.2503387610.1186/1752-0509-8-83
Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, Tsuji S, Kawano S, Hayashi N, Takehara T: CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 2013;62:1536-1546.2293667410.1136/gutjnl-2011-301625
Ratajczak MZ: Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey' to cancerogenesis. Folia Histochem Cytobiol 2012;50:171-179.2276397410.5603/FHC.2012.0026
Wu J, Qin Y, Li B, He WZ, Sun ZL: Hypomethylated and hypermethylated profiles of H19DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics 2008;91:443-450.1835869610.1016/j.ygeno.2008.01.007
Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX, Guo JM: Non-coding RNAs and gastric cancer. World J Gastroenterol 2014;20:5411-5419.2483387110.3748/wjg.v20.i18.5411
References_xml – reference: Jia W, Chen W, Kang J: The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells. Genomics Proteomics Bioinformatics 2013;11:275-283.2409612910.1016/j.gpb.2013.09.004
– reference: Koutsaki M, Spandidos DA, Zaravinos A: Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 2014;351:173-181.2495225810.1016/j.canlet.2014.05.022
– reference: Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, Tsuji S, Kawano S, Hayashi N, Takehara T: CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 2013;62:1536-1546.2293667410.1136/gutjnl-2011-301625
– reference: Mei Z, He Y, Feng J, Shi J, Du Y, Qian L, Huang Q Jie Z: MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2. FEBS Lett 2014;588:3055-3061.2494573110.1016/j.febslet.2014.06.020
– reference: Cui Y, Chen J, He Z, Xiao Y: SUZ12 depletion suppresses the proliferation of gastric cancer cells. Cell Physiol Biochem 2013;31:778-784.2373584010.1159/000350095
– reference: Zhou X, Xia Y, Su J, Zhang G: Down-regulation of miR-141 induced by helicobacter pylori promotes the invasion of gastric cancer by targeting STAT4. Cell Physiol Biochem 2014;33:1003-1012.2473237710.1159/000358671
– reference: Bierhoff H, Postepska-Igielska A, Grummt I: Noisy silence: non-coding RNA and heterochromatin formation at repetitive elements. Epigenetics 2014;9:53-61.2412153910.4161/epi.26485
– reference: Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX, Guo JM: Non-coding RNAs and gastric cancer. World J Gastroenterol 2014;20:5411-5419.2483387110.3748/wjg.v20.i18.5411
– reference: Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I: A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 2014;53:506-514.2444050310.1016/j.molcel.2013.12.012
– reference: Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 2013;333:213-221.2335459110.1016/j.canlet.2013.01.033
– reference: Ørom UA, Shiekhattar R: Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 2013;154:1190-1193.2403424310.1016/j.cell.2013.08.028
– reference: Ratajczak MZ: Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey' to cancerogenesis. Folia Histochem Cytobiol 2012;50:171-179.2276397410.5603/FHC.2012.0026
– reference: Chiu HS, Llobet-Navas D, Yang X, Chung WJ, Ambesi-Impiombato A, Iyer A, Kim HR, Seviour EG, Luo Z, Sehgal V, Moss T, Lu Y, Ram P, Silva J, Mills GB, Califano A, Sumazin P: Cupid simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 2015;25:257-267.2537824910.1101/gr.178194.114
– reference: Wu J, Qin Y, Li B, He WZ, Sun ZL: Hypomethylated and hypermethylated profiles of H19DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics 2008;91:443-450.1835869610.1016/j.ygeno.2008.01.007
– reference: Kim EJ, Baik GH: Review on gastric mucosal microbiota profiling differences in patients with chronic gastritis, intestinal metaplasia, and gastric cancer. Korean J Gastroenterol 2014;64:390-393.2567554310.4166/kjg.2014.64.6.390
– reference: Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y: Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 2014;9:e86295.2446601110.1371/journal.pone.0086295
– reference: Paci P, Colombo T, Farina L: Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 2014;8:83.2503387610.1186/1752-0509-8-83
– reference: Zuo QF, Zhang R, Li BS, Zhao YL, Zhuang Y, Yu T, Gong L, Li S, Xiao B, Zou QM: MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis 2015;6: e1623.2563329210.1038/cddis.2014.573
– reference: Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y: The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 2013;52:101-112.2405534210.1016/j.molcel.2013.08.027
– reference: Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, Oshima H, Oshima M, Lee HJ, Kim VN, Chang AN, Goel A, Yang HK: MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut 2015;64:203-214.2487062010.1136/gutjnl-2013-306640
– reference: Zhang D, Xiao YF, Zhang JW, Xie R, Hu CJ, Tang B, Wang SM, Wu YY, Hao NB, Yang SM: miR-1182 attenuates gastric cancer proliferation and metastasis by targeting the open reading frame of hTERT. Cancer Lett 2015;360:151-159.2566244110.1016/j.canlet.2015.01.044
– reference: Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894-907.1838189310.1101/gad.1640608
– reference: Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465:1033-1038.2057720610.1038/nature09144
– reference: Wang QX, Zhu YQ, Zhang H, Xiao J: Altered MiRNA expression in gastric cancer: a systematic review and meta-analysis. Cell Physiol Biochem 2015;35:933-944.2563374710.1159/000369750
– reference: Shi X, Sun M, Liu H, Yao Y, Song Y: Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 2013;339:159-166.2379188410.1016/j.canlet.2013.06.013
– reference: Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ, Millikan RC: FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 2010;31:1417-1423.2055474910.1093/carcin/bgq128
– reference: Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, Kwok TT: Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31:350-358.1992663810.1093/carcin/bgp181
SSID ssj0015792
Score 2.508665
Snippet Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression....
Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141)...
BACKGROUND/AIMSNon-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression....
SourceID doaj
proquest
pubmed
crossref
karger
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1440
SubjectTerms Base Sequence
Cell Line, Tumor
Cell Movement
Cell Proliferation
Gastric cancer
Gastric Mucosa - metabolism
Gene Expression Regulation, Neoplastic
H19
Homeodomain Proteins - genetics
Humans
MicroRNAs - genetics
MicroRNAs - metabolism
Migration
MiR-141
Neoplasm Invasiveness - genetics
Neoplasm Invasiveness - pathology
Original Paper
Proliferation
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Stomach - pathology
Stomach Neoplasms - genetics
Stomach Neoplasms - metabolism
Stomach Neoplasms - pathology
Transcription Factors - genetics
Zinc Finger E-box-Binding Homeobox 1
SummonAdditionalLinks – databaseName: Karger Open Access Journals
  dbid: M--
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELagCNFLBaXQQEEGceBiEcd2HB-7EWWFtFW1KlJvkZ_VilW22m4P_fd47CQqiB7jTGwlM8m8nO9D6It1DnDBKkIls4TX1BDdaE-cF9w7KaxJpYvFeT3_xX9eiauh3gH_wvyG_c8JGnXCFogO91vqWEE34Cl6FvMoBpv3FoRM_QIhVe5rUkGamEYPGEJ_XQq4vzWNCQjQuz9wQgmrPzqgvPTjkWbyOGcv0cEQKuLTrNtX6InvD9HzTB55f4hetCNX22u0idrGqbiX_1PAs7z9Ci9WS0I5xbp3eN3b5fkpmVOFVz1eZhL66Llw69drfAH0PcFng0jyi9X1cBTFf2gg-LC4BSvZHqHLs--X7ZwMVArEclbtiJdlqZ30NfeNFgrah6rmtQl11VAWnFBaBduoSlQ-cBtYVZoYy8Ux4SVj7A3a6ze9P0ZYS1E5x4OXdZxAKsOMVcLVOoZicRFZoK_jo-3sADMObBfrLqUbQnWTQgr0eRK9ydga_xOagX4mAYDDTgOb7XU3vF2dDFwbIMJkpeel0UbqeD_xe2SVcc6wAh1l7U7TjJOf_DPeXszyqe7GhQJ9Gm2hiwqFVoru_ebutothn4KKmaAFepuNZJpiNLJ3jyz6Hu1XYKepjnOC9nbbO_8hRjY78zEZ9R-Bxexy
  priority: 102
  providerName: Karger AG
Title The Interaction Between MiR-141 and lncRNA-H19 in Regulating Cell Proliferation and Migration in Gastric Cancer
URI https://karger.com/doi/10.1159/000430309
https://www.ncbi.nlm.nih.gov/pubmed/26160158
https://www.proquest.com/docview/1729354051
https://doaj.org/article/7f4ab898930e40bab7aa9f042c9bddb3
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS9xAFB-KIO2lqNU2asu09OBlMMnMZDJHN6iLsCKLBW9hPmVxycq6Hvrf981MEmxp8dJLIJOXyTDvB-9r8n4IfTfWhr5gJSkENYRVhSaqVo5Yx5mzghsdUxez62r6g13d8bsXVF_hTFhqD5w27lR4pnTgOKS5Y7lWWiglPUDNSG2tjn0-weYNwVRfP-BCpjpnwQm8LPqeQmC7T2PxKxQWfrNEsWE_WKGHcP56_W93M5qdix30vvcX8Vla5y5647o9tJ0YJH_uobfNQNj2Aa1A5Thm-NLPCniSzmDh2WJOClZg1Vm87Mz8-oxMC4kXHZ4nJnowX7hxyyW-CRw-3iVURPnZ4r6_A_FLFVg-DG4CVNb76Pbi_LaZkp5PgRhGyw1xIs-VFa5irlZchhqirFilfVXWBfWWS9hZU8uSl84z42mZa3DoYIw7QSk9QFvdqnOfEFaCl9Yy70QFEwipqTaS20qBPwYfERk6Gba2NX2v8UB5sWxjzMFlO2ohQ99G0cfUYONvQpOgn1Eg9MSOA4CUtkdK-xpSMrSftDtOM0x-_Md4czNJj9pH6zP0dcBCCwoN9RTVudXzUwu-nwxpM15k6GMCyTgFBKYQ6vL68H-s_Ai9KwOSY-bnGG1t1s_uM_hCG_0lwh6uM0J-AQIAAog
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwEB5BESoXBKVAoIBBHLhYJPErPnYjygLNqlotUm-RX6lWrLLVsj3w7_EjiQDRY5zJWMlMMuMZ5_sA3htrAy5YiQtBDKa80FhVymHrGHVWMKNj6aJZ8Pl3-vWSXQ71jvAvzI-w_zlCo07YAj7gfowdq9ANuAv3hOQyoOQ3GE_9AiZk6msWDFd-GT1gCP11acD95YVfgAR69z-CUMTq9wEoTX17phkjztkjeDikiug02fYx3HH9EdxP5JG_juCwHrnansDWWxvF4l76TwHN0vYr1KyXuKAFUr1Fm94sF6d4Xki07tEykdD7yIVqt9mgi0Df07nkEFG-WV8NR178swoEHwbVwUt2x7A6-7Sq53igUsCGknKPnchzZYXj1FWKydA-lJxy3fGyKkhnmVSyM5UsWek6ajpS5trncn6MOUEIeQoH_bZ3zwEpwUpraecE9wqE1EQbySxXPhXzk4gMPoyPtjUDzHhgu9i0cbnBZDsZJIN3k-h1wtb4n9As2GcSCHDYcWC7u2qHt6sVHVU6EGGS3NFcKy2Uvx__PTJSW6tJBsfJupOaUfnJP-P1xSydaq9tl8Hb0Rdab9DQSlG92978bH3aJ0PFjBUZPEtOMqkYnezFLZO-gcP5qjlvz78svr2EB2Xw2VjTOYGD_e7GvfJZzl6_jg7-G-Qs72o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Interaction+Between+MiR-141+and+lncRNA-H19+in+Regulating+Cell+Proliferation+and+Migration+in+Gastric+Cancer&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Zhou%2C+Xiaoying&rft.au=Ye%2C+Feng&rft.au=Yin%2C+Chengqiang&rft.au=Zhuang%2C+Ya&rft.date=2015-01-01&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=36&rft.issue=4&rft.spage=1440&rft.epage=1452&rft_id=info:doi/10.1159%2F000430309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000430309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon