The Interaction Between MiR-141 and lncRNA-H19 in Regulating Cell Proliferation and Migration in Gastric Cancer
Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated...
Saved in:
Published in | Cellular physiology and biochemistry Vol. 36; no. 4; pp. 1440 - 1452 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
Cell Physiol Biochem Press GmbH & Co KG
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study. Methods: H19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro. Results: H19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1. Conclusion: These results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer. |
---|---|
AbstractList | Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study. Methods: H19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro. Results: H19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1. Conclusion: These results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer. BACKGROUND/AIMSNon-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study.METHODSH19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro.RESULTSH19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1.CONCLUSIONThese results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer. Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study. H19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro. H19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1. These results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer. |
Author | Yin, Chengqiang Zhou, Xiaoying Zhuang, Ya Yue, Ge Zhang, Guoxin Ye, Feng |
Author_xml | – sequence: 1 givenname: Xiaoying surname: Zhou fullname: Zhou, Xiaoying email: guoxinz@njmu.edu.cn – sequence: 2 givenname: Feng surname: Ye fullname: Ye, Feng – sequence: 3 givenname: Chengqiang surname: Yin fullname: Yin, Chengqiang – sequence: 4 givenname: Ya surname: Zhuang fullname: Zhuang, Ya – sequence: 5 givenname: Ge surname: Yue fullname: Yue, Ge – sequence: 6 givenname: Guoxin surname: Zhang fullname: Zhang, Guoxin email: guoxinz@njmu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26160158$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1v1DAQhi1URD_gwB2hSFzgEOqvxPGxjUq7UgvVau-W44wXl6y9OF4h_n29myUH1JP9zjzzjmbmHJ344AGh9wR_JaSSlxhjzjDD8hU6I5ySUgrRnOQ_JlXZyEacovNxfMJZCknfoFNakzqL5gyF1U8oFj5B1Ca54ItrSH8AfPHgliXhpNC-LwZvlt-vyjsiC-eLJax3g07Or4sWhqF4jGFwNhsc6vf8g1sfVcZv9ZiiM0WrvYH4Fr22ehjh3fG9QKtvN6v2rrz_cbtor-5LwxlNJQiMdS-g5tDoSmJWEVnzurM1bQizfSW1tKaRtKJgubGM4q7iOMcqEIyxC7SYbPugn9Q2uo2Of1XQTh0CIa6VjsmZAZSwXHd5SZJh4LjTndDZG3NqZNf33d7r8-S1jeH3DsakNm40eXLtIexGRQSVLDevSEY_HtFdt4F-bvxv3xn4MgEmhnGMYGeEYLW_pZpvmdnL_1jj0mGtKWo3vFjxYar4peMa4uw9pz-9mG4frydCbXvLngGs8bG- |
CitedBy_id | crossref_primary_10_1016_j_gene_2018_11_034 crossref_primary_10_1155_2017_4723193 crossref_primary_10_1155_2021_7107705 crossref_primary_10_1007_s13277_015_3924_y crossref_primary_10_1038_s41420_018_0051_8 crossref_primary_10_3390_ijerph18062862 crossref_primary_10_1007_s10863_020_09844_6 crossref_primary_10_1002_cbf_3785 crossref_primary_10_1016_j_gendis_2021_08_012 crossref_primary_10_3727_096504018X15178768577951 crossref_primary_10_1016_j_flm_2017_12_002 crossref_primary_10_3892_ol_2018_9832 crossref_primary_10_1016_j_artmed_2017_02_001 crossref_primary_10_1007_s12033_024_01343_y crossref_primary_10_1007_s12035_020_02165_0 crossref_primary_10_1016_j_abb_2016_09_014 crossref_primary_10_3892_mmr_2018_9567 crossref_primary_10_1155_2024_6217134 crossref_primary_10_1007_s11010_019_03564_1 crossref_primary_10_3934_molsci_2016_2_104 crossref_primary_10_3390_ncrna4020014 crossref_primary_10_3390_ijms17030356 crossref_primary_10_1016_j_bbrc_2016_09_028 crossref_primary_10_18632_oncotarget_6926 crossref_primary_10_1007_s10753_019_01141_8 crossref_primary_10_1515_hsz_2021_0316 crossref_primary_10_1002_jcp_28594 crossref_primary_10_1016_j_neuint_2022_105347 crossref_primary_10_1007_s12041_019_1126_x crossref_primary_10_1016_j_jare_2020_03_010 crossref_primary_10_1007_s00011_018_1170_7 crossref_primary_10_3389_fgene_2021_607748 crossref_primary_10_1002_jcb_28078 crossref_primary_10_18632_aging_103876 crossref_primary_10_1007_s11255_018_1938_2 crossref_primary_10_1080_15384101_2020_1812918 crossref_primary_10_1016_j_ncrna_2024_03_013 crossref_primary_10_1007_s00404_022_06423_5 crossref_primary_10_3892_mmr_2017_7029 crossref_primary_10_1016_j_gendis_2023_02_008 crossref_primary_10_1002_jcp_27656 crossref_primary_10_3727_096504018X15201143705855 crossref_primary_10_1007_s10238_022_00947_5 crossref_primary_10_1007_s13277_015_4749_4 crossref_primary_10_1016_j_ncrna_2016_10_001 crossref_primary_10_3390_cancers12102741 crossref_primary_10_1038_onc_2017_133 crossref_primary_10_1186_s12935_020_01369_7 crossref_primary_10_34172_ajmb_2019_06 crossref_primary_10_1016_j_trim_2021_101526 crossref_primary_10_1038_cddis_2016_149 crossref_primary_10_3390_cancers9040038 crossref_primary_10_1007_s13277_016_4852_1 crossref_primary_10_1080_15384101_2018_1496741 crossref_primary_10_1111_cas_14896 crossref_primary_10_1016_j_biopha_2018_06_007 crossref_primary_10_18632_oncotarget_23960 crossref_primary_10_1002_1873_3468_12171 crossref_primary_10_1007_s12539_019_00319_w crossref_primary_10_3390_genes10070506 crossref_primary_10_1016_j_yexmp_2019_104365 crossref_primary_10_1016_j_etap_2024_104623 crossref_primary_10_1016_j_knosys_2019_105261 crossref_primary_10_1016_j_mgene_2017_07_004 crossref_primary_10_1159_000518756 crossref_primary_10_2174_1573394718666220413124759 crossref_primary_10_3389_fonc_2021_628027 crossref_primary_10_1186_s12977_024_00637_y crossref_primary_10_1002_jcp_28714 crossref_primary_10_1038_cddis_2016_64 crossref_primary_10_1016_j_micpath_2020_104442 crossref_primary_10_1007_s12013_024_01290_0 crossref_primary_10_3892_or_2016_4929 crossref_primary_10_1016_j_ejso_2017_06_013 crossref_primary_10_1016_j_lfs_2023_122316 crossref_primary_10_1002_jcp_29260 crossref_primary_10_1038_s41598_023_35639_x crossref_primary_10_18632_aging_101999 crossref_primary_10_1002_cbf_4072 crossref_primary_10_1002_jcb_29308 crossref_primary_10_1002_jcb_25867 crossref_primary_10_1002_jcb_25988 crossref_primary_10_18632_oncotarget_13076 crossref_primary_10_1007_s00018_019_03240_z crossref_primary_10_1016_j_biopha_2019_109774 crossref_primary_10_1002_cbin_10960 crossref_primary_10_1038_s41598_023_43744_0 crossref_primary_10_1016_j_yexcr_2019_05_010 crossref_primary_10_3389_fimmu_2024_1406538 crossref_primary_10_1111_jcmm_14102 crossref_primary_10_1093_gastro_goab050 crossref_primary_10_1042_CS20171588 crossref_primary_10_3892_ijmm_2019_4221 crossref_primary_10_1007_s10620_020_06581_z crossref_primary_10_1155_2021_6911734 crossref_primary_10_18632_oncotarget_11128 crossref_primary_10_1002_ijc_32277 crossref_primary_10_3892_etm_2018_7142 crossref_primary_10_1016_j_critrevonc_2018_03_028 crossref_primary_10_1186_s12890_020_01218_3 crossref_primary_10_3390_ijms22115683 crossref_primary_10_3390_ncrna4040040 crossref_primary_10_3389_fgene_2022_833857 crossref_primary_10_1016_j_bbamcr_2017_08_001 crossref_primary_10_2147_OTT_S251231 crossref_primary_10_1002_jcb_29006 crossref_primary_10_1186_s12957_021_02274_7 crossref_primary_10_3390_cells11010073 crossref_primary_10_1038_s12276_023_00926_0 crossref_primary_10_1016_j_cancergen_2023_12_006 crossref_primary_10_2147_OTT_S247776 crossref_primary_10_18632_oncotarget_13012 crossref_primary_10_1016_j_biopha_2018_10_096 crossref_primary_10_2147_CMAR_S254944 crossref_primary_10_2147_PGPM_S304524 crossref_primary_10_18632_oncotarget_22555 crossref_primary_10_3390_ijms241411861 crossref_primary_10_1016_j_ncrna_2018_10_001 crossref_primary_10_1002_cbf_4018 crossref_primary_10_1016_j_semcancer_2020_12_012 crossref_primary_10_1186_s12935_018_0544_9 crossref_primary_10_1002_jcb_29332 crossref_primary_10_1002_jcb_29058 crossref_primary_10_3892_mmr_2018_8782 crossref_primary_10_1007_s00018_017_2626_6 crossref_primary_10_4251_wjgo_v10_i9_260 crossref_primary_10_1007_s00253_019_09837_5 crossref_primary_10_2174_1871530319666190904161707 crossref_primary_10_3892_ol_2018_9187 crossref_primary_10_3892_or_2017_5751 crossref_primary_10_2174_0113816128277350231219062154 crossref_primary_10_1038_s41420_024_02275_x crossref_primary_10_3390_ijms22179165 crossref_primary_10_1158_1541_7786_MCR_22_0134 crossref_primary_10_1371_journal_pone_0267798 crossref_primary_10_18632_oncotarget_7578 crossref_primary_10_1016_j_ygeno_2018_12_009 crossref_primary_10_1155_2020_1767056 crossref_primary_10_1007_s11033_017_4103_6 crossref_primary_10_3389_fgene_2020_598773 crossref_primary_10_3390_cells8101207 crossref_primary_10_3390_ijms18020450 crossref_primary_10_1016_j_omtn_2018_05_024 crossref_primary_10_18632_oncotarget_13957 crossref_primary_10_1371_journal_pone_0171661 crossref_primary_10_1089_dna_2015_3171 crossref_primary_10_1007_s11064_019_02789_2 crossref_primary_10_1007_s10571_015_0320_5 crossref_primary_10_1016_j_phrs_2020_104683 crossref_primary_10_1159_000506291 crossref_primary_10_3892_ijo_2016_3407 crossref_primary_10_1186_s12885_024_13209_2 |
ContentType | Journal Article |
Copyright | 2015 S. Karger AG, Basel 2015 S. Karger AG, Basel. |
Copyright_xml | – notice: 2015 S. Karger AG, Basel – notice: 2015 S. Karger AG, Basel. |
DBID | M-- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1159/000430309 |
DatabaseName | Karger Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1421-9778 |
EndPage | 1452 |
ExternalDocumentID | oai_doaj_org_article_7f4ab898930e40bab7aa9f042c9bddb3 26160158 10_1159_000430309 430309 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 0~B 29B 30W 326 36B 3O. 4.4 53G 5GY 5VS 6J9 8UI AAFWJ AAYIC ACGFO ACGFS ADBBV AENEX AEYAO AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV CS3 CYUIP DIK DU5 E0A E3Z EBS EJD EMB EMOBN F5P FB. GROUPED_DOAJ HZ~ IAO IHR IPNFZ KQ8 KUZGX M-- ML- N9A O1H O9- OK1 P2P RIG RKO RNS SV3 UJ6 7X7 88E 8FI 8FJ AAYXX ABBTS ABUWG ABWCG ACQXL ADAGL AFKRA AFSIO AHFRZ AIOBO BENPR BPHCQ BVXVI CAG CCPQU CITATION COF FYUFA HMCUK ITC M1P PHGZM PHGZT PQQKQ PROAC PSQYO RXVBD UKHRP 3V. CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c432t-e700ad7e64e8a5903519646bf62813fd59a9fc89252ef4cf320b5409fc5e7333 |
IEDL.DBID | DOA |
ISSN | 1015-8987 |
IngestDate | Wed Aug 27 01:19:37 EDT 2025 Fri Jul 11 00:40:23 EDT 2025 Wed Feb 19 02:35:05 EST 2025 Thu Apr 24 22:59:32 EDT 2025 Tue Jul 01 05:08:47 EDT 2025 Thu Aug 29 12:04:18 EDT 2024 Thu Sep 05 18:04:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | H19 MiR-141 Proliferation Gastric cancer Migration |
Language | English |
License | Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) applicable to the online version of the article only. Distribution permitted for non-commercial purposes only. https://creativecommons.org/licenses/by-nc/3.0 2015 S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-e700ad7e64e8a5903519646bf62813fd59a9fc89252ef4cf320b5409fc5e7333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/7f4ab898930e40bab7aa9f042c9bddb3 |
PMID | 26160158 |
PQID | 1729354051 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_26160158 proquest_miscellaneous_1729354051 crossref_primary_10_1159_000430309 crossref_citationtrail_10_1159_000430309 karger_primary_430309 doaj_primary_oai_doaj_org_article_7f4ab898930e40bab7aa9f042c9bddb3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Germany |
PublicationTitle | Cellular physiology and biochemistry |
PublicationTitleAlternate | Cell Physiol Biochem |
PublicationYear | 2015 |
Publisher | Cell Physiol Biochem Press GmbH & Co KG |
Publisher_xml | – name: Cell Physiol Biochem Press GmbH & Co KG |
References | Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, Kwok TT: Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31:350-358.1992663810.1093/carcin/bgp181 Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ, Millikan RC: FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 2010;31:1417-1423.2055474910.1093/carcin/bgq128 Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I: A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 2014;53:506-514.2444050310.1016/j.molcel.2013.12.012 Zuo QF, Zhang R, Li BS, Zhao YL, Zhuang Y, Yu T, Gong L, Li S, Xiao B, Zou QM: MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis 2015;6: e1623.2563329210.1038/cddis.2014.573 Chiu HS, Llobet-Navas D, Yang X, Chung WJ, Ambesi-Impiombato A, Iyer A, Kim HR, Seviour EG, Luo Z, Sehgal V, Moss T, Lu Y, Ram P, Silva J, Mills GB, Califano A, Sumazin P: Cupid simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 2015;25:257-267.2537824910.1101/gr.178194.114 Wang QX, Zhu YQ, Zhang H, Xiao J: Altered MiRNA expression in gastric cancer: a systematic review and meta-analysis. Cell Physiol Biochem 2015;35:933-944.2563374710.1159/000369750 Zhang D, Xiao YF, Zhang JW, Xie R, Hu CJ, Tang B, Wang SM, Wu YY, Hao NB, Yang SM: miR-1182 attenuates gastric cancer proliferation and metastasis by targeting the open reading frame of hTERT. Cancer Lett 2015;360:151-159.2566244110.1016/j.canlet.2015.01.044 Zhou X, Xia Y, Su J, Zhang G: Down-regulation of miR-141 induced by helicobacter pylori promotes the invasion of gastric cancer by targeting STAT4. Cell Physiol Biochem 2014;33:1003-1012.2473237710.1159/000358671 Cui Y, Chen J, He Z, Xiao Y: SUZ12 depletion suppresses the proliferation of gastric cancer cells. Cell Physiol Biochem 2013;31:778-784.2373584010.1159/000350095 Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 2013;333:213-221.2335459110.1016/j.canlet.2013.01.033 Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465:1033-1038.2057720610.1038/nature09144 Jia W, Chen W, Kang J: The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells. Genomics Proteomics Bioinformatics 2013;11:275-283.2409612910.1016/j.gpb.2013.09.004 Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, Oshima H, Oshima M, Lee HJ, Kim VN, Chang AN, Goel A, Yang HK: MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut 2015;64:203-214.2487062010.1136/gutjnl-2013-306640 Mei Z, He Y, Feng J, Shi J, Du Y, Qian L, Huang Q Jie Z: MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2. FEBS Lett 2014;588:3055-3061.2494573110.1016/j.febslet.2014.06.020 Koutsaki M, Spandidos DA, Zaravinos A: Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 2014;351:173-181.2495225810.1016/j.canlet.2014.05.022 Kim EJ, Baik GH: Review on gastric mucosal microbiota profiling differences in patients with chronic gastritis, intestinal metaplasia, and gastric cancer. Korean J Gastroenterol 2014;64:390-393.2567554310.4166/kjg.2014.64.6.390 Bierhoff H, Postepska-Igielska A, Grummt I: Noisy silence: non-coding RNA and heterochromatin formation at repetitive elements. Epigenetics 2014;9:53-61.2412153910.4161/epi.26485 Ørom UA, Shiekhattar R: Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 2013;154:1190-1193.2403424310.1016/j.cell.2013.08.028 Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894-907.1838189310.1101/gad.1640608 Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y: The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 2013;52:101-112.2405534210.1016/j.molcel.2013.08.027 Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y: Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 2014;9:e86295.2446601110.1371/journal.pone.0086295 Shi X, Sun M, Liu H, Yao Y, Song Y: Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 2013;339:159-166.2379188410.1016/j.canlet.2013.06.013 Paci P, Colombo T, Farina L: Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 2014;8:83.2503387610.1186/1752-0509-8-83 Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, Tsuji S, Kawano S, Hayashi N, Takehara T: CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 2013;62:1536-1546.2293667410.1136/gutjnl-2011-301625 Ratajczak MZ: Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey' to cancerogenesis. Folia Histochem Cytobiol 2012;50:171-179.2276397410.5603/FHC.2012.0026 Wu J, Qin Y, Li B, He WZ, Sun ZL: Hypomethylated and hypermethylated profiles of H19DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics 2008;91:443-450.1835869610.1016/j.ygeno.2008.01.007 Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX, Guo JM: Non-coding RNAs and gastric cancer. World J Gastroenterol 2014;20:5411-5419.2483387110.3748/wjg.v20.i18.5411 |
References_xml | – reference: Jia W, Chen W, Kang J: The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells. Genomics Proteomics Bioinformatics 2013;11:275-283.2409612910.1016/j.gpb.2013.09.004 – reference: Koutsaki M, Spandidos DA, Zaravinos A: Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 2014;351:173-181.2495225810.1016/j.canlet.2014.05.022 – reference: Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, Tsuji S, Kawano S, Hayashi N, Takehara T: CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 2013;62:1536-1546.2293667410.1136/gutjnl-2011-301625 – reference: Mei Z, He Y, Feng J, Shi J, Du Y, Qian L, Huang Q Jie Z: MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2. FEBS Lett 2014;588:3055-3061.2494573110.1016/j.febslet.2014.06.020 – reference: Cui Y, Chen J, He Z, Xiao Y: SUZ12 depletion suppresses the proliferation of gastric cancer cells. Cell Physiol Biochem 2013;31:778-784.2373584010.1159/000350095 – reference: Zhou X, Xia Y, Su J, Zhang G: Down-regulation of miR-141 induced by helicobacter pylori promotes the invasion of gastric cancer by targeting STAT4. Cell Physiol Biochem 2014;33:1003-1012.2473237710.1159/000358671 – reference: Bierhoff H, Postepska-Igielska A, Grummt I: Noisy silence: non-coding RNA and heterochromatin formation at repetitive elements. Epigenetics 2014;9:53-61.2412153910.4161/epi.26485 – reference: Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX, Guo JM: Non-coding RNAs and gastric cancer. World J Gastroenterol 2014;20:5411-5419.2483387110.3748/wjg.v20.i18.5411 – reference: Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I: A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 2014;53:506-514.2444050310.1016/j.molcel.2013.12.012 – reference: Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 2013;333:213-221.2335459110.1016/j.canlet.2013.01.033 – reference: Ørom UA, Shiekhattar R: Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 2013;154:1190-1193.2403424310.1016/j.cell.2013.08.028 – reference: Ratajczak MZ: Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey' to cancerogenesis. Folia Histochem Cytobiol 2012;50:171-179.2276397410.5603/FHC.2012.0026 – reference: Chiu HS, Llobet-Navas D, Yang X, Chung WJ, Ambesi-Impiombato A, Iyer A, Kim HR, Seviour EG, Luo Z, Sehgal V, Moss T, Lu Y, Ram P, Silva J, Mills GB, Califano A, Sumazin P: Cupid simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 2015;25:257-267.2537824910.1101/gr.178194.114 – reference: Wu J, Qin Y, Li B, He WZ, Sun ZL: Hypomethylated and hypermethylated profiles of H19DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics 2008;91:443-450.1835869610.1016/j.ygeno.2008.01.007 – reference: Kim EJ, Baik GH: Review on gastric mucosal microbiota profiling differences in patients with chronic gastritis, intestinal metaplasia, and gastric cancer. Korean J Gastroenterol 2014;64:390-393.2567554310.4166/kjg.2014.64.6.390 – reference: Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y: Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 2014;9:e86295.2446601110.1371/journal.pone.0086295 – reference: Paci P, Colombo T, Farina L: Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 2014;8:83.2503387610.1186/1752-0509-8-83 – reference: Zuo QF, Zhang R, Li BS, Zhao YL, Zhuang Y, Yu T, Gong L, Li S, Xiao B, Zou QM: MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis 2015;6: e1623.2563329210.1038/cddis.2014.573 – reference: Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y: The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 2013;52:101-112.2405534210.1016/j.molcel.2013.08.027 – reference: Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, Oshima H, Oshima M, Lee HJ, Kim VN, Chang AN, Goel A, Yang HK: MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut 2015;64:203-214.2487062010.1136/gutjnl-2013-306640 – reference: Zhang D, Xiao YF, Zhang JW, Xie R, Hu CJ, Tang B, Wang SM, Wu YY, Hao NB, Yang SM: miR-1182 attenuates gastric cancer proliferation and metastasis by targeting the open reading frame of hTERT. Cancer Lett 2015;360:151-159.2566244110.1016/j.canlet.2015.01.044 – reference: Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894-907.1838189310.1101/gad.1640608 – reference: Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465:1033-1038.2057720610.1038/nature09144 – reference: Wang QX, Zhu YQ, Zhang H, Xiao J: Altered MiRNA expression in gastric cancer: a systematic review and meta-analysis. Cell Physiol Biochem 2015;35:933-944.2563374710.1159/000369750 – reference: Shi X, Sun M, Liu H, Yao Y, Song Y: Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 2013;339:159-166.2379188410.1016/j.canlet.2013.06.013 – reference: Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ, Millikan RC: FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 2010;31:1417-1423.2055474910.1093/carcin/bgq128 – reference: Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, Kwok TT: Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31:350-358.1992663810.1093/carcin/bgp181 |
SSID | ssj0015792 |
Score | 2.508665 |
Snippet | Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression.... Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141)... BACKGROUND/AIMSNon-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression.... |
SourceID | doaj proquest pubmed crossref karger |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1440 |
SubjectTerms | Base Sequence Cell Line, Tumor Cell Movement Cell Proliferation Gastric cancer Gastric Mucosa - metabolism Gene Expression Regulation, Neoplastic H19 Homeodomain Proteins - genetics Humans MicroRNAs - genetics MicroRNAs - metabolism Migration MiR-141 Neoplasm Invasiveness - genetics Neoplasm Invasiveness - pathology Original Paper Proliferation RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism Stomach - pathology Stomach Neoplasms - genetics Stomach Neoplasms - metabolism Stomach Neoplasms - pathology Transcription Factors - genetics Zinc Finger E-box-Binding Homeobox 1 |
SummonAdditionalLinks | – databaseName: Karger Open Access Journals dbid: M-- link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELagCNFLBaXQQEEGceBiEcd2HB-7EWWFtFW1KlJvkZ_VilW22m4P_fd47CQqiB7jTGwlM8m8nO9D6It1DnDBKkIls4TX1BDdaE-cF9w7KaxJpYvFeT3_xX9eiauh3gH_wvyG_c8JGnXCFogO91vqWEE34Cl6FvMoBpv3FoRM_QIhVe5rUkGamEYPGEJ_XQq4vzWNCQjQuz9wQgmrPzqgvPTjkWbyOGcv0cEQKuLTrNtX6InvD9HzTB55f4hetCNX22u0idrGqbiX_1PAs7z9Ci9WS0I5xbp3eN3b5fkpmVOFVz1eZhL66Llw69drfAH0PcFng0jyi9X1cBTFf2gg-LC4BSvZHqHLs--X7ZwMVArEclbtiJdlqZ30NfeNFgrah6rmtQl11VAWnFBaBduoSlQ-cBtYVZoYy8Ux4SVj7A3a6ze9P0ZYS1E5x4OXdZxAKsOMVcLVOoZicRFZoK_jo-3sADMObBfrLqUbQnWTQgr0eRK9ydga_xOagX4mAYDDTgOb7XU3vF2dDFwbIMJkpeel0UbqeD_xe2SVcc6wAh1l7U7TjJOf_DPeXszyqe7GhQJ9Gm2hiwqFVoru_ebutothn4KKmaAFepuNZJpiNLJ3jyz6Hu1XYKepjnOC9nbbO_8hRjY78zEZ9R-Bxexy priority: 102 providerName: Karger AG |
Title | The Interaction Between MiR-141 and lncRNA-H19 in Regulating Cell Proliferation and Migration in Gastric Cancer |
URI | https://karger.com/doi/10.1159/000430309 https://www.ncbi.nlm.nih.gov/pubmed/26160158 https://www.proquest.com/docview/1729354051 https://doaj.org/article/7f4ab898930e40bab7aa9f042c9bddb3 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS9xAFB-KIO2lqNU2asu09OBlMMnMZDJHN6iLsCKLBW9hPmVxycq6Hvrf981MEmxp8dJLIJOXyTDvB-9r8n4IfTfWhr5gJSkENYRVhSaqVo5Yx5mzghsdUxez62r6g13d8bsXVF_hTFhqD5w27lR4pnTgOKS5Y7lWWiglPUDNSG2tjn0-weYNwVRfP-BCpjpnwQm8LPqeQmC7T2PxKxQWfrNEsWE_WKGHcP56_W93M5qdix30vvcX8Vla5y5647o9tJ0YJH_uobfNQNj2Aa1A5Thm-NLPCniSzmDh2WJOClZg1Vm87Mz8-oxMC4kXHZ4nJnowX7hxyyW-CRw-3iVURPnZ4r6_A_FLFVg-DG4CVNb76Pbi_LaZkp5PgRhGyw1xIs-VFa5irlZchhqirFilfVXWBfWWS9hZU8uSl84z42mZa3DoYIw7QSk9QFvdqnOfEFaCl9Yy70QFEwipqTaS20qBPwYfERk6Gba2NX2v8UB5sWxjzMFlO2ohQ99G0cfUYONvQpOgn1Eg9MSOA4CUtkdK-xpSMrSftDtOM0x-_Md4czNJj9pH6zP0dcBCCwoN9RTVudXzUwu-nwxpM15k6GMCyTgFBKYQ6vL68H-s_Ai9KwOSY-bnGG1t1s_uM_hCG_0lwh6uM0J-AQIAAog |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwEB5BESoXBKVAoIBBHLhYJPErPnYjygLNqlotUm-RX6lWrLLVsj3w7_EjiQDRY5zJWMlMMuMZ5_sA3htrAy5YiQtBDKa80FhVymHrGHVWMKNj6aJZ8Pl3-vWSXQ71jvAvzI-w_zlCo07YAj7gfowdq9ANuAv3hOQyoOQ3GE_9AiZk6msWDFd-GT1gCP11acD95YVfgAR69z-CUMTq9wEoTX17phkjztkjeDikiug02fYx3HH9EdxP5JG_juCwHrnansDWWxvF4l76TwHN0vYr1KyXuKAFUr1Fm94sF6d4Xki07tEykdD7yIVqt9mgi0Df07nkEFG-WV8NR178swoEHwbVwUt2x7A6-7Sq53igUsCGknKPnchzZYXj1FWKydA-lJxy3fGyKkhnmVSyM5UsWek6ajpS5trncn6MOUEIeQoH_bZ3zwEpwUpraecE9wqE1EQbySxXPhXzk4gMPoyPtjUDzHhgu9i0cbnBZDsZJIN3k-h1wtb4n9As2GcSCHDYcWC7u2qHt6sVHVU6EGGS3NFcKy2Uvx__PTJSW6tJBsfJupOaUfnJP-P1xSydaq9tl8Hb0Rdab9DQSlG92978bH3aJ0PFjBUZPEtOMqkYnezFLZO-gcP5qjlvz78svr2EB2Xw2VjTOYGD_e7GvfJZzl6_jg7-G-Qs72o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Interaction+Between+MiR-141+and+lncRNA-H19+in+Regulating+Cell+Proliferation+and+Migration+in+Gastric+Cancer&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Zhou%2C+Xiaoying&rft.au=Ye%2C+Feng&rft.au=Yin%2C+Chengqiang&rft.au=Zhuang%2C+Ya&rft.date=2015-01-01&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=36&rft.issue=4&rft.spage=1440&rft.epage=1452&rft_id=info:doi/10.1159%2F000430309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000430309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon |