A matrix-based Bayesian approach for manufacturing resource allocation planning in supply chain management
Nowadays, the supply chain of manufacturing resources is typically a large complex network, whose management requires network-based resource allocation planning. This paper presents a novel matrix-based Bayesian approach for recommending the optimal resource allocation plan that has the largest prob...
Saved in:
Published in | International journal of production research Vol. 51; no. 5; pp. 1451 - 1463 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis Group
01.03.2013
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nowadays, the supply chain of manufacturing resources is typically a large complex network, whose management requires network-based resource allocation planning. This paper presents a novel matrix-based Bayesian approach for recommending the optimal resource allocation plan that has the largest probability as the optimal selection within the context specified by the user. A proposed matrix-based representation of the resource allocation plan provides supply chain modelling with a good basis to understand problem complexity, support computer reasoning, facilitate resource re-allocation, and add quantitative information. The proposed Bayesian approach produces the optimal, robust manufacturing resource allocation plan by solving a multi-criteria decision-making problem that addresses not only the ontology-based static manufacturing resource capabilities, but also the statistical nature of the manufacturing supply chain, i.e. probabilities of resource execution and resource interaction execution. A genetic algorithm is employed to solve the multi-criteria decision-making problem efficiently. We use a case study from manufacturing domain to demonstrate the applicability of the proposed approach to optimal manufacturing resource allocation planning. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207543.2012.693966 |