Coordinated Microgrid Frequency Regulation Based on DFIG Variable Coefficient Using Virtual Inertia and Primary Frequency Control

This paper proposes a variable coefficient combined virtual inertia and primary frequency control strategy for doubly fed induction generators (DFIG) in coordination with diesel generator to participate in wind/photovoltaic/diesel microgrid frequency regulation. The frequency response characteristic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 31; no. 3; pp. 833 - 845
Main Authors Zhao, Jingjing, Lyu, Xue, Fu, Yang, Hu, Xiaoguang, Li, Fangxing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a variable coefficient combined virtual inertia and primary frequency control strategy for doubly fed induction generators (DFIG) in coordination with diesel generator to participate in wind/photovoltaic/diesel microgrid frequency regulation. The frequency response characteristic is analyzed under different wind speeds with corresponding inertia control parameters different. A 10% wind power margin is preserved through overspeed control and pitch angle control to offset the decrease of wind output power after temporary extra power surge, and provide a permanent frequency support for microgrids. The influence of droop control gain setting is also illustrated under different wind velocities. By continuously adjusting the control parameters according to wind speed variation, a variable coefficient method is realized. The method can guarantee an efficient implementation of this strategy in time-varying conditions. Finally, this coordinated control strategy is tested in a storage-independent microgrid with solar, wind, and diesel generators.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2016.2537539