Input-to-State Stabilizing Control Under Denial-of-Service
The issue of cyber-security has become ever more prevalent in the analysis and design of networked systems. In this paper, we analyze networked control systems in the presence of denial-of-service (DoS) attacks, namely attacks that prevent transmissions over the network. We characterize frequency an...
Saved in:
Published in | IEEE transactions on automatic control Vol. 60; no. 11; pp. 2930 - 2944 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The issue of cyber-security has become ever more prevalent in the analysis and design of networked systems. In this paper, we analyze networked control systems in the presence of denial-of-service (DoS) attacks, namely attacks that prevent transmissions over the network. We characterize frequency and duration of the DoS attacks under which input-to-state stability (ISS) of the closed-loop system can be preserved. To achieve ISS, a suitable scheduling of the transmission times is determined. It is shown that the considered framework is flexible enough so as to allow the designer to choose from several implementation options that can be used for trading-off performance versus communication resources. Examples are given to substantiate the analysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2015.2416924 |