Biosynthesis of the Terpene Phenalinolactone in Streptomyces sp. Tü6071: Analysis of the Gene Cluster and Generation of Derivatives
Phenalinolactones are terpene glycosides with antibacterial activity. A striking structural feature is a highly oxidized γ-butyrolactone of elusive biosynthetic origin. To investigate the genetic basis of the phenalinolactones biosynthesis, we cloned and sequenced the corresponding gene cluster from...
Saved in:
Published in | Chemistry & biology Vol. 13; no. 4; pp. 365 - 377 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.04.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Phenalinolactones are terpene glycosides with antibacterial activity. A striking structural feature is a highly oxidized γ-butyrolactone of elusive biosynthetic origin. To investigate the genetic basis of the phenalinolactones biosynthesis, we cloned and sequenced the corresponding gene cluster from the producer strain
Streptomyces sp. Tü6071. Spanning a 42 kbp region, 35 candidate genes could be assigned to putatively encode biosynthetic, regulatory, and resistance-conferring functions. Targeted gene inactivations were carried out to specifically manipulate the phenalinolactones pathway. The inactivation of a sugar methyltransferase gene and a cytochrome P450 monoxygenase gene led to the production of modified phenalinolactone derivatives. The inactivation of a Fe(II)/α-ketoglutarate-dependent dioxygenase gene disrupted the biosynthetic pathway within γ-butyrolactone formation. The structure elucidation of the accumulating intermediate indicated that pyruvate is the biosynthetic precursor of the γ butyrolactone moiety. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1074-5521 1879-1301 |
DOI: | 10.1016/j.chembiol.2006.01.011 |