Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study

[Display omitted] The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 607; no. Pt 2; pp. 1005 - 1013
Main Authors Li, Xinyi, Su, Zhanhua, Zhao, Zhifeng, Cai, Qinghai, Li, Yafei, Zhao, Jingxiang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.
AbstractList [Display omitted] The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.
The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N₄-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N₄-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N₄-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηᴼᴿᴿ = 0.34 V and ηᴼᴱᴿ = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N₄-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.
The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.
Author Su, Zhanhua
Cai, Qinghai
Li, Yafei
Zhao, Zhifeng
Zhao, Jingxiang
Li, Xinyi
Author_xml – sequence: 1
  givenname: Xinyi
  surname: Li
  fullname: Li, Xinyi
  organization: College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
– sequence: 2
  givenname: Zhanhua
  surname: Su
  fullname: Su, Zhanhua
  organization: College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
– sequence: 3
  givenname: Zhifeng
  surname: Zhao
  fullname: Zhao, Zhifeng
  email: zfzhao@gdupt.edu.cn
  organization: College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
– sequence: 4
  givenname: Qinghai
  surname: Cai
  fullname: Cai, Qinghai
  organization: College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
– sequence: 5
  givenname: Yafei
  surname: Li
  fullname: Li, Yafei
  organization: Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
– sequence: 6
  givenname: Jingxiang
  surname: Zhao
  fullname: Zhao, Jingxiang
  email: zhaojingxiang@hrbnu.edu.cn
  organization: College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
BookMark eNqFkcFu1DAQhi1UJLaFF-DkI5dsx3GcxIgLqgqtVLHSAmfLsSddr7J2sJ1K-wY8Nl5tTz2Ui0fy_N9o5v8vyYUPHgn5yGDNgLXX-_XeuLSuoWZrkGtoxBuyYiBF1THgF2QFpVPJTnbvyGVKewDGhJAr8ven848T0vtIdQ4Hqr3ZhYiWOk_nY4xhcqb60VAb5vL5GPW8Q49UJ6rpHMPBpcLTwY2LN9kFryeKE5ocg9FZT8eU6RgizTukm-32enO7_VxIEw7zkvUzkPJij-_J21FPCT881yvy-9vtr5u76mHz_f7m60NlGl7n8rbQgRjkYDnvLcph0Bo4qwGw4czWlknWNryxrBVjzwS041BbKVgrh6Zv-RX5dJ5btv-zYMqq3GBwmrTHsCRVt7zggkP_f6nouo5z2cgirc9SE0NKEUc1R3fQ8agYqFNCaq9OCalTQgqkKgkVqH8BGXc2JUftptfRL2cUi1VPDqNKxqE3aF0s7isb3Gv4P1garrk
CitedBy_id crossref_primary_10_1016_j_ijhydene_2023_11_265
crossref_primary_10_1016_j_apsusc_2024_160939
crossref_primary_10_1016_j_molliq_2024_125535
crossref_primary_10_1016_j_pnsc_2023_10_002
crossref_primary_10_1007_s11581_022_04842_7
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_2139_ssrn_4145228
crossref_primary_10_1021_acs_jpcc_2c06682
crossref_primary_10_1016_j_apsusc_2023_157896
crossref_primary_10_1016_j_mcat_2024_114784
crossref_primary_10_1063_5_0141839
crossref_primary_10_1021_acsami_3c02232
crossref_primary_10_1016_j_apsusc_2022_153948
crossref_primary_10_1016_j_jcis_2023_02_103
crossref_primary_10_1016_j_jcis_2024_04_115
crossref_primary_10_1039_D4CP03608E
crossref_primary_10_1021_acssuschemeng_4c07297
crossref_primary_10_1002_adma_202303243
crossref_primary_10_1016_j_mtcomm_2024_108860
crossref_primary_10_1021_acsmaterialslett_2c00694
crossref_primary_10_1016_j_apsusc_2023_158218
crossref_primary_10_1088_2053_1591_ad674b
crossref_primary_10_1016_j_colsurfa_2022_128882
crossref_primary_10_1016_j_jallcom_2022_168107
crossref_primary_10_1039_D3CP03487A
crossref_primary_10_1016_j_apcata_2022_118777
crossref_primary_10_1016_j_ijhydene_2023_04_249
crossref_primary_10_1021_acs_inorgchem_3c03368
crossref_primary_10_1016_j_mcat_2022_112879
crossref_primary_10_1039_D2TA02642B
crossref_primary_10_1039_D4TA02457E
crossref_primary_10_1016_j_mcat_2024_114188
crossref_primary_10_1016_j_mtchem_2023_101758
crossref_primary_10_1016_j_apsusc_2022_153813
crossref_primary_10_1007_s12274_023_6057_4
crossref_primary_10_1016_j_ijhydene_2023_03_336
crossref_primary_10_1016_j_jcis_2024_09_190
crossref_primary_10_1016_j_jece_2023_110382
crossref_primary_10_1016_j_coelec_2022_101116
crossref_primary_10_1038_s41929_023_01106_z
crossref_primary_10_1016_j_ijhydene_2024_02_317
crossref_primary_10_1016_j_jcis_2022_12_128
crossref_primary_10_1021_acs_jpcc_2c07086
crossref_primary_10_1002_cctc_202201579
crossref_primary_10_1021_acsmaterialslett_4c00961
crossref_primary_10_1039_D2TA09788E
crossref_primary_10_1016_j_apsusc_2023_158959
crossref_primary_10_1016_j_mcat_2024_114053
crossref_primary_10_1016_j_jcis_2021_11_148
crossref_primary_10_1039_D2TC03445J
crossref_primary_10_1016_j_electacta_2024_144098
crossref_primary_10_1016_j_surfin_2024_105069
crossref_primary_10_1039_D2NR01671K
crossref_primary_10_1016_j_ijhydene_2022_11_181
crossref_primary_10_1016_j_commatsci_2023_112634
crossref_primary_10_1063_5_0164869
crossref_primary_10_1039_D3NR04396G
crossref_primary_10_1016_j_chemphys_2023_111888
crossref_primary_10_1016_j_jcis_2022_09_023
crossref_primary_10_1016_j_apsusc_2022_154969
crossref_primary_10_1016_j_apsusc_2025_162640
crossref_primary_10_1016_j_jcis_2022_05_127
crossref_primary_10_1016_j_cis_2024_103279
crossref_primary_10_1016_j_jcis_2025_01_060
crossref_primary_10_1016_j_apsusc_2023_157318
crossref_primary_10_1039_D4QI00793J
crossref_primary_10_1002_slct_202304408
crossref_primary_10_1016_j_mcat_2025_114928
crossref_primary_10_1016_j_mcat_2021_112109
crossref_primary_10_1039_D3NR01501G
crossref_primary_10_1016_j_jcis_2023_07_128
crossref_primary_10_1002_cey2_682
crossref_primary_10_1039_D3NR00938F
crossref_primary_10_1039_D3TA03024E
crossref_primary_10_1021_acsaem_1c03956
crossref_primary_10_1021_acs_inorgchem_4c04704
crossref_primary_10_3390_en16247981
crossref_primary_10_1021_acsanm_4c02434
crossref_primary_10_1016_j_jallcom_2022_164063
crossref_primary_10_1016_j_jcis_2023_06_066
crossref_primary_10_1016_j_electacta_2023_143223
crossref_primary_10_1016_j_mssp_2022_107164
crossref_primary_10_1016_j_jallcom_2022_166122
crossref_primary_10_1021_acsami_3c14995
crossref_primary_10_1016_S1872_5805_24_60863_2
crossref_primary_10_1016_j_jcis_2022_02_054
crossref_primary_10_1021_acs_langmuir_4c00803
crossref_primary_10_1016_j_jmst_2024_09_043
crossref_primary_10_3390_catal13101378
crossref_primary_10_4139_sfj_74_118
crossref_primary_10_1016_j_jpcs_2024_112221
crossref_primary_10_1016_j_apsusc_2022_153453
crossref_primary_10_1016_j_cattod_2024_114657
crossref_primary_10_1016_j_cplett_2022_139805
crossref_primary_10_1016_j_mcat_2023_113775
crossref_primary_10_1016_j_mcat_2023_113537
crossref_primary_10_1002_cssc_202300637
crossref_primary_10_1016_j_jtice_2023_105201
crossref_primary_10_1088_1361_648X_acf263
crossref_primary_10_1016_S1872_2067_23_64621_2
crossref_primary_10_1039_D3QI01908J
crossref_primary_10_1016_j_jcis_2024_06_242
crossref_primary_10_1021_acsami_2c19640
crossref_primary_10_1002_cctc_202201016
crossref_primary_10_1039_D4CP00542B
crossref_primary_10_1016_j_jcis_2022_02_106
Cites_doi 10.1149/1.3008005
10.1039/D0TA01047B
10.1021/acs.jpcc.0c01045
10.1021/ja4060299
10.1016/j.apsusc.2020.145777
10.1063/1.463940
10.1016/j.nanoen.2018.12.017
10.1021/jp047349j
10.1002/anie.201703864
10.1016/j.cattod.2018.07.036
10.1038/s41929-019-0237-3
10.1016/j.joule.2021.05.018
10.1002/aenm.201903068
10.1021/jacs.9b12642
10.1021/acs.inorgchem.8b02680
10.1039/C9CP02155H
10.1002/cssc.201802499
10.1002/celc.201900448
10.1016/j.jcis.2021.05.028
10.1002/anie.201905241
10.1002/aenm.201701343
10.1002/advs.201900053
10.1039/C9EE03027A
10.1021/acs.accounts.6b00346
10.1002/cctc.201901643
10.1016/j.isci.2019.10.001
10.1016/j.jcis.2021.01.062
10.1039/C8TA03302A
10.1039/D1CP00690H
10.1002/ange.201906079
10.1002/smtd.201800419
10.1039/D0NR03339A
10.1039/D0TA12567A
10.1002/jcc.20495
10.1021/jacs.1c04682
10.1126/science.aaw7515
10.1002/adma.201800005
10.1021/jacs.6b13100
10.1002/cctc.201000397
10.1016/j.electacta.2010.02.056
10.1103/PhysRevB.54.11169
10.1021/jacs.7b05213
10.1103/PhysRevLett.77.3865
10.1016/j.jelechem.2010.10.004
10.1038/s41929-018-0063-z
10.1021/acsami.0c13597
10.1039/D0NR07580A
10.1021/acssuschemeng.0c09192
10.1039/C8SC04521F
10.1063/1.4865107
10.1021/jz2016507
10.1002/anie.201904614
10.1016/j.ces.2021.116642
10.1039/C8TA02985G
10.1016/j.jelechem.2006.11.008
10.1039/C9CY01131E
10.1021/acssuschemeng.0c01908
10.1021/acsami.0c06062
10.1039/C9TA13599E
10.1039/C4CS00015C
10.1021/jp4100608
10.1016/j.carbon.2017.12.121
10.1149/1.2220792
10.1021/acsaem.9b01329
10.1021/es0499344
10.1021/cr020730k
10.1039/C4CS00484A
10.1016/j.nantod.2016.09.001
10.1039/C9TA12255A
10.1038/s41560-017-0078-8
10.1016/j.jcis.2021.07.087
10.1038/35104599
10.1002/anie.202012329
10.1039/D0CC04752J
10.1039/c0ee00071j
10.1002/cctc.201402248
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.09.045
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 1013
ExternalDocumentID 10_1016_j_jcis_2021_09_045
S0021979721015010
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c432t-c460705b9bd338de9bbaa031200e431d2d1916434d165f81506fb2d95169b4863
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 01:48:56 EDT 2025
Fri Jul 11 12:30:49 EDT 2025
Tue Jul 01 01:19:10 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Fri Feb 23 02:43:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Bifunctional catalysts
TM-N/C materials
DFT
Single atom catalysts
ORR/OER
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-c460705b9bd338de9bbaa031200e431d2d1916434d165f81506fb2d95169b4863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2577733949
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2636435308
proquest_miscellaneous_2577733949
crossref_primary_10_1016_j_jcis_2021_09_045
crossref_citationtrail_10_1016_j_jcis_2021_09_045
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_09_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ji, Dong, Liu, Li (b0040) 2018; 6
Lin, Cai, Zeng, Yu (b0050) 2018; 30
Chen, Zhang, Hu, Qing, Zhang (b0245) 2021; 239
Zhang, Afza, Pan, Zhang, Zou (b0030) 2019; 6
Zhang, Liu, Shi, Ye (b0130) 2018; 8
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (b0205) 2010; 3
Li, Zhao, Cai, Yin, Zhao (b0100) 2020; 8
Zhang, Asthagiri (b0365) 2019; 323
Lee, Ko, Kim, Min, Hwang, Oh (b0380) 2020; 56
Zhang, Li, Xi, Du, Hai, Wang, Xu, Wu, Zhang, Lu (b0125) 2019; 131
Wan, Liu, Li, Yu, Zheng, Yan, Wang, Xu, Shui (b0305) 2019; 2
Wang, Wan, Tian, Hou, Gu, Wang (b0290) 2021; 590
Hansen, Viswanathan, Nørskov (b0420) 2014; 118
Perilli, Selli, Liu, Valentin (b0270) 2018; 12
Winter, Brodd (b0025) 2004; 104
Lee, Elliott (b0175) 2011; 107
Zhang, Yang, Lu, Wang (b0085) 2018; 130
Fan, Hou, Choi, Wu, Hong, Li, Soo, Kang, Jung, Sun (b0155) 2019; 10
Wang, Huang, Zhao, Wang, Xiang, Li, Feng, Xu, Gu (b0335) 2020; 142
Lee, Suntivich, May, Perry, Shao-Horn (b0055) 2012; 3
Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jonsson (b0200) 2004; 108
Wang, Zhang, Cai, Wang, Zhao, Li, Huang, Han, Zhou, Feng, Li, Li, Xu, Francisco, Gu (b0345) 2021; 143
Huang, Wang, Tao, Tian (b0370) 2019; 10
Cheng, Dai, Song, Zhang (b0415) 2019; 2
Osgood, Devaguptapu, Xu, Wu (b0060) 2016; 11
Jia, Wei, Cai, Zhao (bib427) 2021; 600
Hai, Gao, Zhao, Dong, Huang, Li, Wang (b0235) 2019; 20
Mathew, Sundararaman, Weaver, Arias, Hennig (b0355) 2014; 140
Wang, Liu, Liu, Wang, Luo, Han, Du, Qiao, Yang (b0265) 2018; 30
Liu, Logan (b0010) 2004; 38
Zheng, Jiao, Zhu, Cai, Vasileff, Li, Han, Chen, Qiao (b0075) 2017; 139
Zhao, Chen (b0095) 2017; 139
Ma, Su, Huang, Jiang, Bai, Liu (b0150) 2019; 11
Song, Xie, Wang, Guo, He, Fu (b0295) 2021; 23
Cao, Shao, Pan, Lu (b0275) 2020; 124
Kresse, Furthmuller (b0180) 1996; 54
Martyna, Klein, Tuckerman (b0195) 1992; 97
Zhang, Li, Deng, Shen, Zhang, Pan, Xiong, Liu, Xia, Wang, Tu (b0350) 2019; 6
Nguyen, White (b0005) 1993; 8
Kwak, Khetan, Noh, Pitsch, Han (b0360) 2014; 6
Rossmeisl, Qu, Zhu, Kroes, Nørskov (b0320) 2007; 607
Niu, Wan, Wang, Shao, Robertson, Zhang, Guo (b0255) 2021; 9
Zeng, Liu, Chen, Chen, Fan, Lau (b0215) 2020; 12
Wu, Ma, Wang, Zhang, Huang, Dai (b0400) 2020; 12
Qin, Zhao (b0405) 2022; 605
Zhu, Fu, Shi, Du, Lin (b0115) 2017; 56
Lai, Zhang, Hua, Indris, Yan, Hu, Zhang, Liu, Wang, Liu, Liu, Wang, Wang, Hu, Liu, Chou, Dou (b0340) 2019; 34
Yang, Hung, Liu, Yuan, Miao, Zhang, Huang, Wang, Cai, Chen (b0120) 2018; 3
Li, Wang, Luo, Sherrell, Chen, Yang (b0110) 2020; 32
Perdew, Burke, Ernzerhof (b0185) 1996; 77
Wang, Duan, Huang (b0300) 2019; 10
Zhu, Liu, Wang, Wang, Wang (b0260) 2019; 21
Chen, Chen, Lu, Zhang, Tang, Singh (b0325) 2020; 12
Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jónsson (b0310) 2004; 108
Baran, Gronbeck, Hellman (b0385) 2014; 136
Kaiser, Chen, Akl, Mitchell, Pérez-Ramírez (b0105) 1809; 120
Huang, Li, Zhao, Chen, Bu, Cheng (b0240) 2021; 9
He, Matta, Will, Du (b0410) 2019; 3
Zhang, Zhang, Zhang, Jiao, Zhou (b0280) 2018; 6
Adli, Shan, Hwang, Samarakoon, Karakalos, Li, Cullen, Su, Feng, Wang, Wu (b0145) 2021; 60
Gu, Hsu, Bai, Chen, Hu (b0160) 2019; 364
Janik, Taylor, Neurock (b0220) 2009; 156
Zhang, Zhou, Wang, Li, Jing (b0390) 2020; 8
Kan, Wang, Zhang, Lian, Xu, Chen, Wei (b0250) 2020; 8
Fu, Ling, Wang (b0285) 2020; 8
Li, Dai (b0035) 2014; 43
Koper (b0375) 2011; 660
Strasser (b0065) 2016; 49
Zhou, Gao, Chu, Wang (b0210) 2021; 13
Xu, Zhang, Zhang, Liu, Qiao (b0020) 2019; 57
Yao, Chen, Wang, Lang, Zhu, Gao, Jiang (b0140) 2020; 513
Cheng, Chu, Ling, Li, Wu, Wu, Li, Yuan, Wei (b0165) 2019; 9
Zhang, Zhou, Chen, Feng, Yuan, Zhong, Yan, Tian, Wu, Chu, Wu, Xie (b0170) 2020; 13
S, Wang, Li, Wang, Wang, Li, Xu, Jiang, Liu, Xing, Ge (b0330) 2021; 5
Sun, Mitchell, Li, Lyu, Wu, Ramírez, Lu (b0090) 2021; 33
Karthick, Anantharaj, Ede, Kundu (b0070) 2019; 58
Zhang, Guan (b0135) 2020; 30
Grimme (b0190) 2006; 27
Nie, Li, Wei (b0045) 2015; 44
Xu, Cheng, Cao, Zeng (b0425) 2018; 1
Dresselhaus, Thomas (b0015) 2001; 414
Tripkovic, Skulason, Siahrostami, Nørskov, Rossmeisl (b0225) 2010; 55
Yang, Shui, Du, Shao, Liu, Dai, Hu (b0080) 2019; 31
Man, Su, Calle-Vallejo, Hansen, Martínez, Inoglu, Kitchin, Jaramillo, Nørskov, Rossmeisl (b0230) 2011; 3
Xiao, Zhu, Li, Li, Li, Cano, Ma, Cui, Xu, Jiang, Jin, Wang, Wu, Lu, Yu, Su, Chen (b0315) 2019; 28
Li (10.1016/j.jcis.2021.09.045_b0035) 2014; 43
Xu (10.1016/j.jcis.2021.09.045_b0425) 2018; 1
Zeng (10.1016/j.jcis.2021.09.045_b0215) 2020; 12
Osgood (10.1016/j.jcis.2021.09.045_b0060) 2016; 11
Zhang (10.1016/j.jcis.2021.09.045_b0350) 2019; 6
Huang (10.1016/j.jcis.2021.09.045_b0370) 2019; 10
Kresse (10.1016/j.jcis.2021.09.045_b0180) 1996; 54
Wang (10.1016/j.jcis.2021.09.045_b0290) 2021; 590
Zhang (10.1016/j.jcis.2021.09.045_b0365) 2019; 323
Ma (10.1016/j.jcis.2021.09.045_b0150) 2019; 11
Janik (10.1016/j.jcis.2021.09.045_b0220) 2009; 156
Zhu (10.1016/j.jcis.2021.09.045_b0260) 2019; 21
Peterson (10.1016/j.jcis.2021.09.045_b0205) 2010; 3
Zhang (10.1016/j.jcis.2021.09.045_b0280) 2018; 6
Qin (10.1016/j.jcis.2021.09.045_b0405) 2022; 605
Fu (10.1016/j.jcis.2021.09.045_b0285) 2020; 8
Karthick (10.1016/j.jcis.2021.09.045_b0070) 2019; 58
Gu (10.1016/j.jcis.2021.09.045_b0160) 2019; 364
Baran (10.1016/j.jcis.2021.09.045_b0385) 2014; 136
Zhao (10.1016/j.jcis.2021.09.045_b0095) 2017; 139
Jia (10.1016/j.jcis.2021.09.045_bib427) 2021; 600
Wu (10.1016/j.jcis.2021.09.045_b0400) 2020; 12
Zhang (10.1016/j.jcis.2021.09.045_b0390) 2020; 8
Sun (10.1016/j.jcis.2021.09.045_b0090) 2021; 33
Man (10.1016/j.jcis.2021.09.045_b0230) 2011; 3
Hansen (10.1016/j.jcis.2021.09.045_b0420) 2014; 118
Wan (10.1016/j.jcis.2021.09.045_b0305) 2019; 2
Zhang (10.1016/j.jcis.2021.09.045_b0085) 2018; 130
Zhang (10.1016/j.jcis.2021.09.045_b0130) 2018; 8
Wang (10.1016/j.jcis.2021.09.045_b0345) 2021; 143
Chen (10.1016/j.jcis.2021.09.045_b0325) 2020; 12
Wang (10.1016/j.jcis.2021.09.045_b0265) 2018; 30
Li (10.1016/j.jcis.2021.09.045_b0110) 2020; 32
Koper (10.1016/j.jcis.2021.09.045_b0375) 2011; 660
Lee (10.1016/j.jcis.2021.09.045_b0380) 2020; 56
He (10.1016/j.jcis.2021.09.045_b0410) 2019; 3
Mathew (10.1016/j.jcis.2021.09.045_b0355) 2014; 140
Zhu (10.1016/j.jcis.2021.09.045_b0115) 2017; 56
Niu (10.1016/j.jcis.2021.09.045_b0255) 2021; 9
Martyna (10.1016/j.jcis.2021.09.045_b0195) 1992; 97
S (10.1016/j.jcis.2021.09.045_b0330) 2021; 5
Cheng (10.1016/j.jcis.2021.09.045_b0165) 2019; 9
Hai (10.1016/j.jcis.2021.09.045_b0235) 2019; 20
Zhang (10.1016/j.jcis.2021.09.045_b0170) 2020; 13
Ji (10.1016/j.jcis.2021.09.045_b0040) 2018; 6
Wang (10.1016/j.jcis.2021.09.045_b0300) 2019; 10
Xu (10.1016/j.jcis.2021.09.045_b0020) 2019; 57
Adli (10.1016/j.jcis.2021.09.045_b0145) 2021; 60
Lai (10.1016/j.jcis.2021.09.045_b0340) 2019; 34
Zhang (10.1016/j.jcis.2021.09.045_b0030) 2019; 6
Fan (10.1016/j.jcis.2021.09.045_b0155) 2019; 10
Li (10.1016/j.jcis.2021.09.045_b0100) 2020; 8
Cheng (10.1016/j.jcis.2021.09.045_b0415) 2019; 2
Chen (10.1016/j.jcis.2021.09.045_b0245) 2021; 239
Xiao (10.1016/j.jcis.2021.09.045_b0315) 2019; 28
Perdew (10.1016/j.jcis.2021.09.045_b0185) 1996; 77
Liu (10.1016/j.jcis.2021.09.045_b0010) 2004; 38
Song (10.1016/j.jcis.2021.09.045_b0295) 2021; 23
Rossmeisl (10.1016/j.jcis.2021.09.045_b0320) 2007; 607
Winter (10.1016/j.jcis.2021.09.045_b0025) 2004; 104
Perilli (10.1016/j.jcis.2021.09.045_b0270) 2018; 12
Yao (10.1016/j.jcis.2021.09.045_b0140) 2020; 513
Nie (10.1016/j.jcis.2021.09.045_b0045) 2015; 44
Zhou (10.1016/j.jcis.2021.09.045_b0210) 2021; 13
Zhang (10.1016/j.jcis.2021.09.045_b0125) 2019; 131
Kan (10.1016/j.jcis.2021.09.045_b0250) 2020; 8
Strasser (10.1016/j.jcis.2021.09.045_b0065) 2016; 49
Tripkovic (10.1016/j.jcis.2021.09.045_b0225) 2010; 55
Kwak (10.1016/j.jcis.2021.09.045_b0360) 2014; 6
Yang (10.1016/j.jcis.2021.09.045_b0080) 2019; 31
Nguyen (10.1016/j.jcis.2021.09.045_b0005) 1993; 8
Grimme (10.1016/j.jcis.2021.09.045_b0190) 2006; 27
Dresselhaus (10.1016/j.jcis.2021.09.045_b0015) 2001; 414
Wang (10.1016/j.jcis.2021.09.045_b0335) 2020; 142
Zhang (10.1016/j.jcis.2021.09.045_b0135) 2020; 30
Kaiser (10.1016/j.jcis.2021.09.045_b0105) 1809; 120
Lee (10.1016/j.jcis.2021.09.045_b0175) 2011; 107
Cao (10.1016/j.jcis.2021.09.045_b0275) 2020; 124
Huang (10.1016/j.jcis.2021.09.045_b0240) 2021; 9
Lin (10.1016/j.jcis.2021.09.045_b0050) 2018; 30
Zheng (10.1016/j.jcis.2021.09.045_b0075) 2017; 139
Yang (10.1016/j.jcis.2021.09.045_b0120) 2018; 3
Nørskov (10.1016/j.jcis.2021.09.045_b0200) 2004; 108
Nørskov (10.1016/j.jcis.2021.09.045_b0310) 2004; 108
Lee (10.1016/j.jcis.2021.09.045_b0055) 2012; 3
References_xml – volume: 56
  start-page: 13944
  year: 2017
  end-page: 13960
  ident: b0115
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 5257
  year: 2014
  end-page: 5275
  ident: b0035
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 339
  year: 2018
  end-page: 348
  ident: b0425
  publication-title: Nat. Catal.
– volume: 21
  start-page: 12826
  year: 2019
  end-page: 12836
  ident: b0260
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 1995
  year: 2018
  end-page: 2007
  ident: b0270
  publication-title: ChemSusChem
– volume: 6
  start-page: 2662
  year: 2014
  end-page: 2670
  ident: b0360
  publication-title: ChemCatChem
– volume: 97
  start-page: 2635
  year: 1992
  end-page: 2643
  ident: b0195
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 2168
  year: 2015
  end-page: 2201
  ident: b0045
  publication-title: Chem. Soc. Rev.
– volume: 107
  year: 2011
  ident: b0175
  publication-title: Phys. Rev. Lett.
– volume: 156
  start-page: B126
  year: 2009
  ident: b0220
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 3340
  year: 2019
  end-page: 3345
  ident: b0370
  publication-title: Chem. Sci.
– volume: 31
  year: 2019
  ident: b0080
  publication-title: Adv. Mater
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: b0180
  publication-title: Phys. Rev. B
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: b0310
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 13489
  year: 2018
  end-page: 13508
  ident: b0040
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 3336
  year: 2017
  end-page: 3339
  ident: b0075
  publication-title: J. Am. Chem. Soc.
– volume: 140
  year: 2014
  ident: b0355
  publication-title: J. Chem. Phys.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: b0190
  publication-title: J. Comput. Chem.
– volume: 2
  start-page: 259
  year: 2019
  end-page: 268
  ident: b0305
  publication-title: Nat. Catal.
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  ident: b0205
  publication-title: Energy Environ. Sci.
– volume: 364
  start-page: 1091
  year: 2019
  end-page: 1094
  ident: b0160
  publication-title: Science
– volume: 323
  start-page: 35
  year: 2019
  end-page: 43
  ident: b0365
  publication-title: Catal. Today
– volume: 12
  start-page: 18721
  year: 2020
  end-page: 18732
  ident: b0325
  publication-title: Nanoscale
– volume: 10
  start-page: 1903068
  year: 2019
  ident: b0155
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1800005
  year: 2018
  ident: b0265
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1903815
  year: 2019
  ident: b0300
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 399
  year: 2012
  end-page: 404
  ident: b0055
  publication-title: J. Phys. Chem. Lett.
– volume: 605
  start-page: 155
  year: 2022
  end-page: 162
  ident: b0405
  publication-title: J. Colloid and Interface Sci.
– volume: 8
  start-page: 7472
  year: 2020
  end-page: 7479
  ident: b0390
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 3590
  year: 2021
  end-page: 3599
  ident: b0255
  publication-title: ACS Sustainable Chem. Eng.
– volume: 513
  year: 2020
  ident: b0140
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 52549
  year: 2020
  end-page: 52559
  ident: b0215
  publication-title: ACS Appl.  Mater. Interfaces.
– volume: 139
  start-page: 12480
  year: 2017
  ident: b0095
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 111
  year: 2020
  end-page: 118
  ident: b0170
  publication-title: Energy  Environ. Sci.
– volume: 13
  start-page: 1331
  year: 2021
  end-page: 1339
  ident: b0210
  publication-title: Nanoscale
– volume: 56
  start-page: 12687
  year: 2020
  end-page: 12697
  ident: b0380
  publication-title: Chem. Commun.
– volume: 8
  start-page: 2178
  year: 1993
  end-page: 2186
  ident: b0005
  publication-title: J. Electrochem. Soc.
– volume: 118
  start-page: 6706
  year: 2014
  end-page: 6718
  ident: b0420
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 481
  year: 2019
  end-page: 488
  ident: b0235
  publication-title: Iscience.
– volume: 34
  start-page: 11868
  year: 2019
  end-page: 11871
  ident: b0340
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1800419
  year: 2019
  ident: b0410
  publication-title: Small Methods
– volume: 30
  year: 2018
  ident: b0050
  publication-title: Adv. Mater.
– volume: 600
  start-page: 711
  year: 2021
  end-page: 718
  ident: bib427
  publication-title: J. Colloid and Interface Science
– volume: 8
  start-page: 1701343
  year: 2018
  ident: b0130
  publication-title: Adv. Energy Mater
– volume: 660
  start-page: 254
  year: 2011
  end-page: 260
  ident: b0375
  publication-title: J. Electroanal. Chem.
– volume: 2
  start-page: 6851
  year: 2019
  end-page: 6859
  ident: b0415
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  start-page: 3530
  year: 2019
  end-page: 3548
  ident: b0350
  publication-title: ChemElectroChem.
– volume: 8
  start-page: 3097
  year: 2020
  end-page: 3108
  ident: b0250
  publication-title: J. Mater. Chem. A
– volume: 142
  start-page: 7425
  year: 2020
  end-page: 7433
  ident: b0335
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  ident: b0110
  publication-title: Adv. Mater.
– volume: 590
  start-page: 210
  year: 2021
  end-page: 218
  ident: b0290
  publication-title: J. Colloid Interface Sci.
– volume: 49
  start-page: 2658
  year: 2016
  end-page: 2668
  ident: b0065
  publication-title: Acc. Chem. Res.
– volume: 30
  year: 2020
  ident: b0135
  publication-title: Adv. Funct. Mater.
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: b0200
  publication-title: J. Phys. Chem. B
– volume: 55
  start-page: 7975
  year: 2010
  end-page: 7981
  ident: b0225
  publication-title: Electrochim. Acta.
– volume: 58
  start-page: 1895
  year: 2019
  end-page: 1904
  ident: b0070
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0150
  publication-title: ChemCatChem
– volume: 12
  start-page: 24066
  year: 2020
  end-page: 24073
  ident: b0400
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 124
  start-page: 11301
  year: 2020
  end-page: 11307
  ident: b0275
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 2164
  year: 2021
  end-page: 2176
  ident: b0330
  publication-title: Joule
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: b0320
  publication-title: J. Electroanal. Chem.
– volume: 239
  start-page: 116642
  year: 2021
  ident: b0245
  publication-title: Chem. Eng. Sci.
– volume: 6
  start-page: 11446
  year: 2018
  end-page: 11452
  ident: b0280
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 9640
  year: 2019
  end-page: 9645
  ident: b0315
  publication-title: Angew. Chemie
– volume: 8
  start-page: 7801
  year: 2020
  end-page: 7807
  ident: b0285
  publication-title: J. Mater. Chem. A
– volume: 131
  start-page: 15013
  year: 2019
  end-page: 15018
  ident: b0125
  publication-title: Angew. Chemie
– volume: 6
  start-page: 1900053
  year: 2019
  ident: b0030
  publication-title: Adv. Sci.
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4270
  ident: b0025
  publication-title: Chem. Rev.
– volume: 11
  start-page: 601
  year: 2016
  end-page: 625
  ident: b0060
  publication-title: Nano Today
– volume: 33
  year: 2021
  ident: b0090
  publication-title: Adv. Mater.
– volume: 9
  start-page: 6442
  year: 2021
  end-page: 6450
  ident: b0240
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 140
  year: 2018
  end-page: 147
  ident: b0120
  publication-title: Nat. Energy
– volume: 57
  start-page: 176
  year: 2019
  end-page: 185
  ident: b0020
  publication-title: Nano Energy
– volume: 9
  start-page: 5668
  year: 2019
  end-page: 5675
  ident: b0165
  publication-title: Catal Sci. Technol.
– volume: 3
  start-page: 1159
  year: 2011
  end-page: 1165
  ident: b0230
  publication-title: ChemCatChem
– volume: 8
  start-page: 4533
  year: 2020
  end-page: 4543
  ident: b0100
  publication-title: J. Mater. Chem. A
– volume: 120
  start-page: 11703
  year: 1809
  end-page: 11711
  ident: b0105
  publication-title: Chem. Rev
– volume: 130
  start-page: 112
  year: 2018
  end-page: 119
  ident: b0085
  publication-title: Carbon
– volume: 38
  start-page: 4040
  year: 2004
  end-page: 4046
  ident: b0010
  publication-title: Environ. Sci. Technol.
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  ident: b0015
  publication-title: Nature
– volume: 143
  start-page: 13605
  year: 2021
  end-page: 13615
  ident: b0345
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0185
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 10418
  year: 2021
  end-page: 10428
  ident: b0295
  publication-title: Phys. Chem. Chem. Phys.
– volume: 60
  start-page: 1022
  year: 2021
  end-page: 1032
  ident: b0145
  publication-title: Angew. Chemie
– volume: 136
  start-page: 1320
  year: 2014
  end-page: 1326
  ident: b0385
  publication-title: J. Am. Chem. Soc.
– volume: 156
  start-page: B126
  year: 2009
  ident: 10.1016/j.jcis.2021.09.045_b0220
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3008005
– volume: 8
  start-page: 7801
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0285
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01047B
– volume: 124
  start-page: 11301
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0275
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c01045
– volume: 136
  start-page: 1320
  year: 2014
  ident: 10.1016/j.jcis.2021.09.045_b0385
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4060299
– volume: 513
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0140
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145777
– volume: 97
  start-page: 2635
  year: 1992
  ident: 10.1016/j.jcis.2021.09.045_b0195
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463940
– volume: 30
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0050
  publication-title: Adv. Mater.
– volume: 120
  start-page: 11703
  issue: 2020
  year: 1809
  ident: 10.1016/j.jcis.2021.09.045_b0105
  publication-title: Chem. Rev.
– volume: 57
  start-page: 176
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0020
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.017
– volume: 108
  start-page: 17886
  year: 2004
  ident: 10.1016/j.jcis.2021.09.045_b0200
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 56
  start-page: 13944
  year: 2017
  ident: 10.1016/j.jcis.2021.09.045_b0115
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 323
  start-page: 35
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0365
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.07.036
– volume: 2
  start-page: 259
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0305
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0237-3
– volume: 107
  year: 2011
  ident: 10.1016/j.jcis.2021.09.045_b0175
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 2164
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0330
  publication-title: Joule
  doi: 10.1016/j.joule.2021.05.018
– volume: 32
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0110
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1903068
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0155
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903068
– volume: 142
  start-page: 7425
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0335
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12642
– volume: 58
  start-page: 1895
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0070
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b02680
– volume: 21
  start-page: 12826
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0260
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP02155H
– volume: 12
  start-page: 1995
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0270
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802499
– volume: 6
  start-page: 3530
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0350
  publication-title: ChemElectroChem.
  doi: 10.1002/celc.201900448
– volume: 600
  start-page: 711
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_bib427
  publication-title: J. Colloid and Interface Science
  doi: 10.1016/j.jcis.2021.05.028
– volume: 28
  start-page: 9640
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0315
  publication-title: Angew. Chemie.
  doi: 10.1002/anie.201905241
– volume: 8
  start-page: 1701343
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0130
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701343
– volume: 6
  start-page: 1900053
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0030
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900053
– volume: 13
  start-page: 111
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0170
  publication-title: Energy  Environ. Sci.
  doi: 10.1039/C9EE03027A
– volume: 49
  start-page: 2658
  year: 2016
  ident: 10.1016/j.jcis.2021.09.045_b0065
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00346
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0150
  publication-title: ChemCatChem.
  doi: 10.1002/cctc.201901643
– volume: 20
  start-page: 481
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0235
  publication-title: Iscience.
  doi: 10.1016/j.isci.2019.10.001
– volume: 590
  start-page: 210
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0290
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.01.062
– volume: 6
  start-page: 11446
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0280
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03302A
– volume: 33
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0090
  publication-title: Adv. Mater.
– volume: 23
  start-page: 10418
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0295
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP00690H
– volume: 108
  start-page: 17886
  year: 2004
  ident: 10.1016/j.jcis.2021.09.045_b0310
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 131
  start-page: 15013
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0125
  publication-title: Angew. Chemie.
  doi: 10.1002/ange.201906079
– volume: 3
  start-page: 1800419
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0410
  publication-title: Small Methods
  doi: 10.1002/smtd.201800419
– volume: 12
  start-page: 18721
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0325
  publication-title: Nanoscale
  doi: 10.1039/D0NR03339A
– volume: 9
  start-page: 6442
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0240
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA12567A
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.jcis.2021.09.045_b0190
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 143
  start-page: 13605
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0345
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c04682
– volume: 364
  start-page: 1091
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0160
  publication-title: Science
  doi: 10.1126/science.aaw7515
– volume: 30
  start-page: 1800005
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0265
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800005
– volume: 139
  start-page: 3336
  year: 2017
  ident: 10.1016/j.jcis.2021.09.045_b0075
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13100
– volume: 3
  start-page: 1159
  year: 2011
  ident: 10.1016/j.jcis.2021.09.045_b0230
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 55
  start-page: 7975
  year: 2010
  ident: 10.1016/j.jcis.2021.09.045_b0225
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2010.02.056
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jcis.2021.09.045_b0180
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 139
  start-page: 12480
  year: 2017
  ident: 10.1016/j.jcis.2021.09.045_b0095
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05213
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jcis.2021.09.045_b0185
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 660
  start-page: 254
  year: 2011
  ident: 10.1016/j.jcis.2021.09.045_b0375
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2010.10.004
– volume: 30
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0135
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 339
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0425
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 12
  start-page: 52549
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0215
  publication-title: ACS Appl.  Mater. Interfaces.
  doi: 10.1021/acsami.0c13597
– volume: 13
  start-page: 1331
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0210
  publication-title: Nanoscale
  doi: 10.1039/D0NR07580A
– volume: 9
  start-page: 3590
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0255
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c09192
– volume: 10
  start-page: 3340
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0370
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04521F
– volume: 140
  year: 2014
  ident: 10.1016/j.jcis.2021.09.045_b0355
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 3
  start-page: 399
  year: 2012
  ident: 10.1016/j.jcis.2021.09.045_b0055
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2016507
– volume: 34
  start-page: 11868
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0340
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904614
– volume: 239
  start-page: 116642
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0245
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116642
– volume: 6
  start-page: 13489
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0040
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02985G
– volume: 607
  start-page: 83
  year: 2007
  ident: 10.1016/j.jcis.2021.09.045_b0320
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 9
  start-page: 5668
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0165
  publication-title: Catal Sci. Technol.
  doi: 10.1039/C9CY01131E
– volume: 8
  start-page: 7472
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0390
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01908
– volume: 12
  start-page: 24066
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0400
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.0c06062
– volume: 8
  start-page: 4533
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0100
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13599E
– volume: 43
  start-page: 5257
  year: 2014
  ident: 10.1016/j.jcis.2021.09.045_b0035
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00015C
– volume: 10
  start-page: 1903815
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0300
  publication-title: Adv. Energy Mater.
– volume: 118
  start-page: 6706
  year: 2014
  ident: 10.1016/j.jcis.2021.09.045_b0420
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4100608
– volume: 130
  start-page: 112
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0085
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.12.121
– volume: 8
  start-page: 2178
  year: 1993
  ident: 10.1016/j.jcis.2021.09.045_b0005
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2220792
– volume: 2
  start-page: 6851
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0415
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01329
– volume: 38
  start-page: 4040
  year: 2004
  ident: 10.1016/j.jcis.2021.09.045_b0010
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0499344
– volume: 104
  start-page: 4245
  year: 2004
  ident: 10.1016/j.jcis.2021.09.045_b0025
  publication-title: Chem. Rev.
  doi: 10.1021/cr020730k
– volume: 44
  start-page: 2168
  year: 2015
  ident: 10.1016/j.jcis.2021.09.045_b0045
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00484A
– volume: 11
  start-page: 601
  year: 2016
  ident: 10.1016/j.jcis.2021.09.045_b0060
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.09.001
– volume: 31
  year: 2019
  ident: 10.1016/j.jcis.2021.09.045_b0080
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3097
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0250
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12255A
– volume: 3
  start-page: 140
  year: 2018
  ident: 10.1016/j.jcis.2021.09.045_b0120
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 605
  start-page: 155
  year: 2022
  ident: 10.1016/j.jcis.2021.09.045_b0405
  publication-title: J. Colloid and Interface Sci.
  doi: 10.1016/j.jcis.2021.07.087
– volume: 414
  start-page: 332
  year: 2001
  ident: 10.1016/j.jcis.2021.09.045_b0015
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 60
  start-page: 1022
  year: 2021
  ident: 10.1016/j.jcis.2021.09.045_b0145
  publication-title: Angew. Chemie.
  doi: 10.1002/anie.202012329
– volume: 56
  start-page: 12687
  year: 2020
  ident: 10.1016/j.jcis.2021.09.045_b0380
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC04752J
– volume: 3
  start-page: 1311
  year: 2010
  ident: 10.1016/j.jcis.2021.09.045_b0205
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 6
  start-page: 2662
  year: 2014
  ident: 10.1016/j.jcis.2021.09.045_b0360
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402248
SSID ssj0011559
Score 2.6371477
Snippet [Display omitted] The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen...
The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1005
SubjectTerms Bifunctional catalysts
catalytic activity
density functional theory
DFT
electrochemistry
energy conversion
graphene
ORR/OER
oxygen
oxygen production
renewable energy sources
Single atom catalysts
TM-N/C materials
Title Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study
URI https://dx.doi.org/10.1016/j.jcis.2021.09.045
https://www.proquest.com/docview/2577733949
https://www.proquest.com/docview/2636435308
Volume 607
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqI8qgGiRsKmzh2HHOrVq22ILbSQqXerPgRkapkV9vtoZee-7OZcZwKEPTAJZGscWJ57HnYM98w9q5W3vFSoZPTCokOSttm2uUy03XuUJ9YXueU7_xlXs1OxKdTebrFpmMuDIVVJtk_yPQorVPLJM3mZNV1lOOLu00R-gx57THNSghFq_zD9W2YR0HXbkOYR5ERdUqcGWK8zlxHkN28iFinlNL0d-X0h5iOuufwMXuUjEbYH8b1hG2Ffofdn4612nbYw19gBZ-ym6_4Og9wtAZ0qX8AMvb7ch08dD2srtZUp8dlcwF-ucLGCFmNEg-aC2gAh4Afxf5gO9J5w1EhpGo58bDn6mIDaOoCmo5wvFhMjg8WH7Gni_Uh0tkiRNjaZ-zk8ODbdJaliguZEyXf4LNCESCtth5dVx-0tU2D2x63UkBLw3OP7h3aMMIXlWxrQidsLfeaLtusqKvyOdvul314wcA60QZluW48F5VXTc5xhzurg6S7Tr3LinGqjUtw5FQV49yMcWdnhthjiD0m1wbZs8ve3_ZZDWAcd1LLkYPmtyVlUFvc2e_tyG6DM04XKE0flpdIJJVSZalp9P-kqUqcIFnm9cv__P8r9oBTjkUMDX_Ntjfry_AGLZ-N3YtLe4_d2z_6PJv_BI0lAno
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcKA9VIW2Kn3QqdRbZcVZe21vbygCJQWClILEbeV9WBhRJwrhwD_oz-6MvUalohx6sSVrx17teOexM_MNwJcid1YkOTk5VSrJQamqSNlYRqqILekTI4qY651PZtnkPP1-IS82YNzXwnBaZZD9nUxvpXV4MgyrOVzWNdf40m7LGX2GvXYus9pkdCo5gM396dFkdh9M4Mhbl-kxipgg1M50aV5XtmbUbjFq4U65qulx_fSXpG7Vz-FLeBHsRtzvprYNG77Zga1x365tB57_gSz4Cn79oNu1x-kKyav-icTby8XKO6wbXN6tuFWPjWYpusWSHrao1ST0sLzBEmkK9FKiR1Oz2utOCzE0zGnPe-5u1kjWLpL1iKfz-fD0YP6NKG3bIiIcL2KLXPsazg8PzsaTKDRdiGyaiDVdM5IC0ijjyHt1XhlTlrTzaTd5MjaccOThkRmTulEmq4IBCisjnOJ4m0mLLHkDg2bR-LeAxqaVz41QpRNp5vIyFrTJrVFecrhT7cKoX2ptAyI5N8a41n3q2ZVm9mhmj46VJvbswtd7mmWHx_HkaNlzUD_4qzQpjCfpPvfs1rTiHEMpG7-4pUEyz_MkUTz7f47JElogmcTFu__8_ifYmpydHOvj6ezoPTwTXHLRZop_gMF6des_kiG0NnvhR_8NYUsFKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Ir+atom+anchored+in+pyrrolic-N4+doped+graphene+as+a+promising+bifunctional+electrocatalyst+for+the+ORR%2FOER%3A+a+computational+study&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Xinyi&rft.au=Su%2C+Zhanhua&rft.au=Zhao%2C+Zhifeng&rft.au=Cai%2C+Qinghai&rft.date=2022-02-01&rft.issn=0021-9797&rft.volume=607+p.1005-1013&rft.spage=1005&rft.epage=1013&rft_id=info:doi/10.1016%2Fj.jcis.2021.09.045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon