Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study
[Display omitted] The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies...
Saved in:
Published in | Journal of colloid and interface science Vol. 607; no. Pt 2; pp. 1005 - 1013 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction.
(OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts. |
---|---|
AbstractList | [Display omitted]
The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction.
(OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts. The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N₄-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N₄-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N₄-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηᴼᴿᴿ = 0.34 V and ηᴼᴱᴿ = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N₄-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts. The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts. |
Author | Su, Zhanhua Cai, Qinghai Li, Yafei Zhao, Zhifeng Zhao, Jingxiang Li, Xinyi |
Author_xml | – sequence: 1 givenname: Xinyi surname: Li fullname: Li, Xinyi organization: College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China – sequence: 2 givenname: Zhanhua surname: Su fullname: Su, Zhanhua organization: College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China – sequence: 3 givenname: Zhifeng surname: Zhao fullname: Zhao, Zhifeng email: zfzhao@gdupt.edu.cn organization: College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China – sequence: 4 givenname: Qinghai surname: Cai fullname: Cai, Qinghai organization: College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China – sequence: 5 givenname: Yafei surname: Li fullname: Li, Yafei organization: Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China – sequence: 6 givenname: Jingxiang surname: Zhao fullname: Zhao, Jingxiang email: zhaojingxiang@hrbnu.edu.cn organization: College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China |
BookMark | eNqFkcFu1DAQhi1UJLaFF-DkI5dsx3GcxIgLqgqtVLHSAmfLsSddr7J2sJ1K-wY8Nl5tTz2Ui0fy_N9o5v8vyYUPHgn5yGDNgLXX-_XeuLSuoWZrkGtoxBuyYiBF1THgF2QFpVPJTnbvyGVKewDGhJAr8ven848T0vtIdQ4Hqr3ZhYiWOk_nY4xhcqb60VAb5vL5GPW8Q49UJ6rpHMPBpcLTwY2LN9kFryeKE5ocg9FZT8eU6RgizTukm-32enO7_VxIEw7zkvUzkPJij-_J21FPCT881yvy-9vtr5u76mHz_f7m60NlGl7n8rbQgRjkYDnvLcph0Bo4qwGw4czWlknWNryxrBVjzwS041BbKVgrh6Zv-RX5dJ5btv-zYMqq3GBwmrTHsCRVt7zggkP_f6nouo5z2cgirc9SE0NKEUc1R3fQ8agYqFNCaq9OCalTQgqkKgkVqH8BGXc2JUftptfRL2cUi1VPDqNKxqE3aF0s7isb3Gv4P1garrk |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_11_265 crossref_primary_10_1016_j_apsusc_2024_160939 crossref_primary_10_1016_j_molliq_2024_125535 crossref_primary_10_1016_j_pnsc_2023_10_002 crossref_primary_10_1007_s11581_022_04842_7 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_2139_ssrn_4145228 crossref_primary_10_1021_acs_jpcc_2c06682 crossref_primary_10_1016_j_apsusc_2023_157896 crossref_primary_10_1016_j_mcat_2024_114784 crossref_primary_10_1063_5_0141839 crossref_primary_10_1021_acsami_3c02232 crossref_primary_10_1016_j_apsusc_2022_153948 crossref_primary_10_1016_j_jcis_2023_02_103 crossref_primary_10_1016_j_jcis_2024_04_115 crossref_primary_10_1039_D4CP03608E crossref_primary_10_1021_acssuschemeng_4c07297 crossref_primary_10_1002_adma_202303243 crossref_primary_10_1016_j_mtcomm_2024_108860 crossref_primary_10_1021_acsmaterialslett_2c00694 crossref_primary_10_1016_j_apsusc_2023_158218 crossref_primary_10_1088_2053_1591_ad674b crossref_primary_10_1016_j_colsurfa_2022_128882 crossref_primary_10_1016_j_jallcom_2022_168107 crossref_primary_10_1039_D3CP03487A crossref_primary_10_1016_j_apcata_2022_118777 crossref_primary_10_1016_j_ijhydene_2023_04_249 crossref_primary_10_1021_acs_inorgchem_3c03368 crossref_primary_10_1016_j_mcat_2022_112879 crossref_primary_10_1039_D2TA02642B crossref_primary_10_1039_D4TA02457E crossref_primary_10_1016_j_mcat_2024_114188 crossref_primary_10_1016_j_mtchem_2023_101758 crossref_primary_10_1016_j_apsusc_2022_153813 crossref_primary_10_1007_s12274_023_6057_4 crossref_primary_10_1016_j_ijhydene_2023_03_336 crossref_primary_10_1016_j_jcis_2024_09_190 crossref_primary_10_1016_j_jece_2023_110382 crossref_primary_10_1016_j_coelec_2022_101116 crossref_primary_10_1038_s41929_023_01106_z crossref_primary_10_1016_j_ijhydene_2024_02_317 crossref_primary_10_1016_j_jcis_2022_12_128 crossref_primary_10_1021_acs_jpcc_2c07086 crossref_primary_10_1002_cctc_202201579 crossref_primary_10_1021_acsmaterialslett_4c00961 crossref_primary_10_1039_D2TA09788E crossref_primary_10_1016_j_apsusc_2023_158959 crossref_primary_10_1016_j_mcat_2024_114053 crossref_primary_10_1016_j_jcis_2021_11_148 crossref_primary_10_1039_D2TC03445J crossref_primary_10_1016_j_electacta_2024_144098 crossref_primary_10_1016_j_surfin_2024_105069 crossref_primary_10_1039_D2NR01671K crossref_primary_10_1016_j_ijhydene_2022_11_181 crossref_primary_10_1016_j_commatsci_2023_112634 crossref_primary_10_1063_5_0164869 crossref_primary_10_1039_D3NR04396G crossref_primary_10_1016_j_chemphys_2023_111888 crossref_primary_10_1016_j_jcis_2022_09_023 crossref_primary_10_1016_j_apsusc_2022_154969 crossref_primary_10_1016_j_apsusc_2025_162640 crossref_primary_10_1016_j_jcis_2022_05_127 crossref_primary_10_1016_j_cis_2024_103279 crossref_primary_10_1016_j_jcis_2025_01_060 crossref_primary_10_1016_j_apsusc_2023_157318 crossref_primary_10_1039_D4QI00793J crossref_primary_10_1002_slct_202304408 crossref_primary_10_1016_j_mcat_2025_114928 crossref_primary_10_1016_j_mcat_2021_112109 crossref_primary_10_1039_D3NR01501G crossref_primary_10_1016_j_jcis_2023_07_128 crossref_primary_10_1002_cey2_682 crossref_primary_10_1039_D3NR00938F crossref_primary_10_1039_D3TA03024E crossref_primary_10_1021_acsaem_1c03956 crossref_primary_10_1021_acs_inorgchem_4c04704 crossref_primary_10_3390_en16247981 crossref_primary_10_1021_acsanm_4c02434 crossref_primary_10_1016_j_jallcom_2022_164063 crossref_primary_10_1016_j_jcis_2023_06_066 crossref_primary_10_1016_j_electacta_2023_143223 crossref_primary_10_1016_j_mssp_2022_107164 crossref_primary_10_1016_j_jallcom_2022_166122 crossref_primary_10_1021_acsami_3c14995 crossref_primary_10_1016_S1872_5805_24_60863_2 crossref_primary_10_1016_j_jcis_2022_02_054 crossref_primary_10_1021_acs_langmuir_4c00803 crossref_primary_10_1016_j_jmst_2024_09_043 crossref_primary_10_3390_catal13101378 crossref_primary_10_4139_sfj_74_118 crossref_primary_10_1016_j_jpcs_2024_112221 crossref_primary_10_1016_j_apsusc_2022_153453 crossref_primary_10_1016_j_cattod_2024_114657 crossref_primary_10_1016_j_cplett_2022_139805 crossref_primary_10_1016_j_mcat_2023_113775 crossref_primary_10_1016_j_mcat_2023_113537 crossref_primary_10_1002_cssc_202300637 crossref_primary_10_1016_j_jtice_2023_105201 crossref_primary_10_1088_1361_648X_acf263 crossref_primary_10_1016_S1872_2067_23_64621_2 crossref_primary_10_1039_D3QI01908J crossref_primary_10_1016_j_jcis_2024_06_242 crossref_primary_10_1021_acsami_2c19640 crossref_primary_10_1002_cctc_202201016 crossref_primary_10_1039_D4CP00542B crossref_primary_10_1016_j_jcis_2022_02_106 |
Cites_doi | 10.1149/1.3008005 10.1039/D0TA01047B 10.1021/acs.jpcc.0c01045 10.1021/ja4060299 10.1016/j.apsusc.2020.145777 10.1063/1.463940 10.1016/j.nanoen.2018.12.017 10.1021/jp047349j 10.1002/anie.201703864 10.1016/j.cattod.2018.07.036 10.1038/s41929-019-0237-3 10.1016/j.joule.2021.05.018 10.1002/aenm.201903068 10.1021/jacs.9b12642 10.1021/acs.inorgchem.8b02680 10.1039/C9CP02155H 10.1002/cssc.201802499 10.1002/celc.201900448 10.1016/j.jcis.2021.05.028 10.1002/anie.201905241 10.1002/aenm.201701343 10.1002/advs.201900053 10.1039/C9EE03027A 10.1021/acs.accounts.6b00346 10.1002/cctc.201901643 10.1016/j.isci.2019.10.001 10.1016/j.jcis.2021.01.062 10.1039/C8TA03302A 10.1039/D1CP00690H 10.1002/ange.201906079 10.1002/smtd.201800419 10.1039/D0NR03339A 10.1039/D0TA12567A 10.1002/jcc.20495 10.1021/jacs.1c04682 10.1126/science.aaw7515 10.1002/adma.201800005 10.1021/jacs.6b13100 10.1002/cctc.201000397 10.1016/j.electacta.2010.02.056 10.1103/PhysRevB.54.11169 10.1021/jacs.7b05213 10.1103/PhysRevLett.77.3865 10.1016/j.jelechem.2010.10.004 10.1038/s41929-018-0063-z 10.1021/acsami.0c13597 10.1039/D0NR07580A 10.1021/acssuschemeng.0c09192 10.1039/C8SC04521F 10.1063/1.4865107 10.1021/jz2016507 10.1002/anie.201904614 10.1016/j.ces.2021.116642 10.1039/C8TA02985G 10.1016/j.jelechem.2006.11.008 10.1039/C9CY01131E 10.1021/acssuschemeng.0c01908 10.1021/acsami.0c06062 10.1039/C9TA13599E 10.1039/C4CS00015C 10.1021/jp4100608 10.1016/j.carbon.2017.12.121 10.1149/1.2220792 10.1021/acsaem.9b01329 10.1021/es0499344 10.1021/cr020730k 10.1039/C4CS00484A 10.1016/j.nantod.2016.09.001 10.1039/C9TA12255A 10.1038/s41560-017-0078-8 10.1016/j.jcis.2021.07.087 10.1038/35104599 10.1002/anie.202012329 10.1039/D0CC04752J 10.1039/c0ee00071j 10.1002/cctc.201402248 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.09.045 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 1013 |
ExternalDocumentID | 10_1016_j_jcis_2021_09_045 S0021979721015010 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-c460705b9bd338de9bbaa031200e431d2d1916434d165f81506fb2d95169b4863 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 01:48:56 EDT 2025 Fri Jul 11 12:30:49 EDT 2025 Tue Jul 01 01:19:10 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Fri Feb 23 02:43:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Bifunctional catalysts TM-N/C materials DFT Single atom catalysts ORR/OER |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-c460705b9bd338de9bbaa031200e431d2d1916434d165f81506fb2d95169b4863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2577733949 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2636435308 proquest_miscellaneous_2577733949 crossref_primary_10_1016_j_jcis_2021_09_045 crossref_citationtrail_10_1016_j_jcis_2021_09_045 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_09_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ji, Dong, Liu, Li (b0040) 2018; 6 Lin, Cai, Zeng, Yu (b0050) 2018; 30 Chen, Zhang, Hu, Qing, Zhang (b0245) 2021; 239 Zhang, Afza, Pan, Zhang, Zou (b0030) 2019; 6 Zhang, Liu, Shi, Ye (b0130) 2018; 8 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (b0205) 2010; 3 Li, Zhao, Cai, Yin, Zhao (b0100) 2020; 8 Zhang, Asthagiri (b0365) 2019; 323 Lee, Ko, Kim, Min, Hwang, Oh (b0380) 2020; 56 Zhang, Li, Xi, Du, Hai, Wang, Xu, Wu, Zhang, Lu (b0125) 2019; 131 Wan, Liu, Li, Yu, Zheng, Yan, Wang, Xu, Shui (b0305) 2019; 2 Wang, Wan, Tian, Hou, Gu, Wang (b0290) 2021; 590 Hansen, Viswanathan, Nørskov (b0420) 2014; 118 Perilli, Selli, Liu, Valentin (b0270) 2018; 12 Winter, Brodd (b0025) 2004; 104 Lee, Elliott (b0175) 2011; 107 Zhang, Yang, Lu, Wang (b0085) 2018; 130 Fan, Hou, Choi, Wu, Hong, Li, Soo, Kang, Jung, Sun (b0155) 2019; 10 Wang, Huang, Zhao, Wang, Xiang, Li, Feng, Xu, Gu (b0335) 2020; 142 Lee, Suntivich, May, Perry, Shao-Horn (b0055) 2012; 3 Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jonsson (b0200) 2004; 108 Wang, Zhang, Cai, Wang, Zhao, Li, Huang, Han, Zhou, Feng, Li, Li, Xu, Francisco, Gu (b0345) 2021; 143 Huang, Wang, Tao, Tian (b0370) 2019; 10 Cheng, Dai, Song, Zhang (b0415) 2019; 2 Osgood, Devaguptapu, Xu, Wu (b0060) 2016; 11 Jia, Wei, Cai, Zhao (bib427) 2021; 600 Hai, Gao, Zhao, Dong, Huang, Li, Wang (b0235) 2019; 20 Mathew, Sundararaman, Weaver, Arias, Hennig (b0355) 2014; 140 Wang, Liu, Liu, Wang, Luo, Han, Du, Qiao, Yang (b0265) 2018; 30 Liu, Logan (b0010) 2004; 38 Zheng, Jiao, Zhu, Cai, Vasileff, Li, Han, Chen, Qiao (b0075) 2017; 139 Zhao, Chen (b0095) 2017; 139 Ma, Su, Huang, Jiang, Bai, Liu (b0150) 2019; 11 Song, Xie, Wang, Guo, He, Fu (b0295) 2021; 23 Cao, Shao, Pan, Lu (b0275) 2020; 124 Kresse, Furthmuller (b0180) 1996; 54 Martyna, Klein, Tuckerman (b0195) 1992; 97 Zhang, Li, Deng, Shen, Zhang, Pan, Xiong, Liu, Xia, Wang, Tu (b0350) 2019; 6 Nguyen, White (b0005) 1993; 8 Kwak, Khetan, Noh, Pitsch, Han (b0360) 2014; 6 Rossmeisl, Qu, Zhu, Kroes, Nørskov (b0320) 2007; 607 Niu, Wan, Wang, Shao, Robertson, Zhang, Guo (b0255) 2021; 9 Zeng, Liu, Chen, Chen, Fan, Lau (b0215) 2020; 12 Wu, Ma, Wang, Zhang, Huang, Dai (b0400) 2020; 12 Qin, Zhao (b0405) 2022; 605 Zhu, Fu, Shi, Du, Lin (b0115) 2017; 56 Lai, Zhang, Hua, Indris, Yan, Hu, Zhang, Liu, Wang, Liu, Liu, Wang, Wang, Hu, Liu, Chou, Dou (b0340) 2019; 34 Yang, Hung, Liu, Yuan, Miao, Zhang, Huang, Wang, Cai, Chen (b0120) 2018; 3 Li, Wang, Luo, Sherrell, Chen, Yang (b0110) 2020; 32 Perdew, Burke, Ernzerhof (b0185) 1996; 77 Wang, Duan, Huang (b0300) 2019; 10 Zhu, Liu, Wang, Wang, Wang (b0260) 2019; 21 Chen, Chen, Lu, Zhang, Tang, Singh (b0325) 2020; 12 Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jónsson (b0310) 2004; 108 Baran, Gronbeck, Hellman (b0385) 2014; 136 Kaiser, Chen, Akl, Mitchell, Pérez-Ramírez (b0105) 1809; 120 Huang, Li, Zhao, Chen, Bu, Cheng (b0240) 2021; 9 He, Matta, Will, Du (b0410) 2019; 3 Zhang, Zhang, Zhang, Jiao, Zhou (b0280) 2018; 6 Adli, Shan, Hwang, Samarakoon, Karakalos, Li, Cullen, Su, Feng, Wang, Wu (b0145) 2021; 60 Gu, Hsu, Bai, Chen, Hu (b0160) 2019; 364 Janik, Taylor, Neurock (b0220) 2009; 156 Zhang, Zhou, Wang, Li, Jing (b0390) 2020; 8 Kan, Wang, Zhang, Lian, Xu, Chen, Wei (b0250) 2020; 8 Fu, Ling, Wang (b0285) 2020; 8 Li, Dai (b0035) 2014; 43 Koper (b0375) 2011; 660 Strasser (b0065) 2016; 49 Zhou, Gao, Chu, Wang (b0210) 2021; 13 Xu, Zhang, Zhang, Liu, Qiao (b0020) 2019; 57 Yao, Chen, Wang, Lang, Zhu, Gao, Jiang (b0140) 2020; 513 Cheng, Chu, Ling, Li, Wu, Wu, Li, Yuan, Wei (b0165) 2019; 9 Zhang, Zhou, Chen, Feng, Yuan, Zhong, Yan, Tian, Wu, Chu, Wu, Xie (b0170) 2020; 13 S, Wang, Li, Wang, Wang, Li, Xu, Jiang, Liu, Xing, Ge (b0330) 2021; 5 Sun, Mitchell, Li, Lyu, Wu, Ramírez, Lu (b0090) 2021; 33 Karthick, Anantharaj, Ede, Kundu (b0070) 2019; 58 Zhang, Guan (b0135) 2020; 30 Grimme (b0190) 2006; 27 Nie, Li, Wei (b0045) 2015; 44 Xu, Cheng, Cao, Zeng (b0425) 2018; 1 Dresselhaus, Thomas (b0015) 2001; 414 Tripkovic, Skulason, Siahrostami, Nørskov, Rossmeisl (b0225) 2010; 55 Yang, Shui, Du, Shao, Liu, Dai, Hu (b0080) 2019; 31 Man, Su, Calle-Vallejo, Hansen, Martínez, Inoglu, Kitchin, Jaramillo, Nørskov, Rossmeisl (b0230) 2011; 3 Xiao, Zhu, Li, Li, Li, Cano, Ma, Cui, Xu, Jiang, Jin, Wang, Wu, Lu, Yu, Su, Chen (b0315) 2019; 28 Li (10.1016/j.jcis.2021.09.045_b0035) 2014; 43 Xu (10.1016/j.jcis.2021.09.045_b0425) 2018; 1 Zeng (10.1016/j.jcis.2021.09.045_b0215) 2020; 12 Osgood (10.1016/j.jcis.2021.09.045_b0060) 2016; 11 Zhang (10.1016/j.jcis.2021.09.045_b0350) 2019; 6 Huang (10.1016/j.jcis.2021.09.045_b0370) 2019; 10 Kresse (10.1016/j.jcis.2021.09.045_b0180) 1996; 54 Wang (10.1016/j.jcis.2021.09.045_b0290) 2021; 590 Zhang (10.1016/j.jcis.2021.09.045_b0365) 2019; 323 Ma (10.1016/j.jcis.2021.09.045_b0150) 2019; 11 Janik (10.1016/j.jcis.2021.09.045_b0220) 2009; 156 Zhu (10.1016/j.jcis.2021.09.045_b0260) 2019; 21 Peterson (10.1016/j.jcis.2021.09.045_b0205) 2010; 3 Zhang (10.1016/j.jcis.2021.09.045_b0280) 2018; 6 Qin (10.1016/j.jcis.2021.09.045_b0405) 2022; 605 Fu (10.1016/j.jcis.2021.09.045_b0285) 2020; 8 Karthick (10.1016/j.jcis.2021.09.045_b0070) 2019; 58 Gu (10.1016/j.jcis.2021.09.045_b0160) 2019; 364 Baran (10.1016/j.jcis.2021.09.045_b0385) 2014; 136 Zhao (10.1016/j.jcis.2021.09.045_b0095) 2017; 139 Jia (10.1016/j.jcis.2021.09.045_bib427) 2021; 600 Wu (10.1016/j.jcis.2021.09.045_b0400) 2020; 12 Zhang (10.1016/j.jcis.2021.09.045_b0390) 2020; 8 Sun (10.1016/j.jcis.2021.09.045_b0090) 2021; 33 Man (10.1016/j.jcis.2021.09.045_b0230) 2011; 3 Hansen (10.1016/j.jcis.2021.09.045_b0420) 2014; 118 Wan (10.1016/j.jcis.2021.09.045_b0305) 2019; 2 Zhang (10.1016/j.jcis.2021.09.045_b0085) 2018; 130 Zhang (10.1016/j.jcis.2021.09.045_b0130) 2018; 8 Wang (10.1016/j.jcis.2021.09.045_b0345) 2021; 143 Chen (10.1016/j.jcis.2021.09.045_b0325) 2020; 12 Wang (10.1016/j.jcis.2021.09.045_b0265) 2018; 30 Li (10.1016/j.jcis.2021.09.045_b0110) 2020; 32 Koper (10.1016/j.jcis.2021.09.045_b0375) 2011; 660 Lee (10.1016/j.jcis.2021.09.045_b0380) 2020; 56 He (10.1016/j.jcis.2021.09.045_b0410) 2019; 3 Mathew (10.1016/j.jcis.2021.09.045_b0355) 2014; 140 Zhu (10.1016/j.jcis.2021.09.045_b0115) 2017; 56 Niu (10.1016/j.jcis.2021.09.045_b0255) 2021; 9 Martyna (10.1016/j.jcis.2021.09.045_b0195) 1992; 97 S (10.1016/j.jcis.2021.09.045_b0330) 2021; 5 Cheng (10.1016/j.jcis.2021.09.045_b0165) 2019; 9 Hai (10.1016/j.jcis.2021.09.045_b0235) 2019; 20 Zhang (10.1016/j.jcis.2021.09.045_b0170) 2020; 13 Ji (10.1016/j.jcis.2021.09.045_b0040) 2018; 6 Wang (10.1016/j.jcis.2021.09.045_b0300) 2019; 10 Xu (10.1016/j.jcis.2021.09.045_b0020) 2019; 57 Adli (10.1016/j.jcis.2021.09.045_b0145) 2021; 60 Lai (10.1016/j.jcis.2021.09.045_b0340) 2019; 34 Zhang (10.1016/j.jcis.2021.09.045_b0030) 2019; 6 Fan (10.1016/j.jcis.2021.09.045_b0155) 2019; 10 Li (10.1016/j.jcis.2021.09.045_b0100) 2020; 8 Cheng (10.1016/j.jcis.2021.09.045_b0415) 2019; 2 Chen (10.1016/j.jcis.2021.09.045_b0245) 2021; 239 Xiao (10.1016/j.jcis.2021.09.045_b0315) 2019; 28 Perdew (10.1016/j.jcis.2021.09.045_b0185) 1996; 77 Liu (10.1016/j.jcis.2021.09.045_b0010) 2004; 38 Song (10.1016/j.jcis.2021.09.045_b0295) 2021; 23 Rossmeisl (10.1016/j.jcis.2021.09.045_b0320) 2007; 607 Winter (10.1016/j.jcis.2021.09.045_b0025) 2004; 104 Perilli (10.1016/j.jcis.2021.09.045_b0270) 2018; 12 Yao (10.1016/j.jcis.2021.09.045_b0140) 2020; 513 Nie (10.1016/j.jcis.2021.09.045_b0045) 2015; 44 Zhou (10.1016/j.jcis.2021.09.045_b0210) 2021; 13 Zhang (10.1016/j.jcis.2021.09.045_b0125) 2019; 131 Kan (10.1016/j.jcis.2021.09.045_b0250) 2020; 8 Strasser (10.1016/j.jcis.2021.09.045_b0065) 2016; 49 Tripkovic (10.1016/j.jcis.2021.09.045_b0225) 2010; 55 Kwak (10.1016/j.jcis.2021.09.045_b0360) 2014; 6 Yang (10.1016/j.jcis.2021.09.045_b0080) 2019; 31 Nguyen (10.1016/j.jcis.2021.09.045_b0005) 1993; 8 Grimme (10.1016/j.jcis.2021.09.045_b0190) 2006; 27 Dresselhaus (10.1016/j.jcis.2021.09.045_b0015) 2001; 414 Wang (10.1016/j.jcis.2021.09.045_b0335) 2020; 142 Zhang (10.1016/j.jcis.2021.09.045_b0135) 2020; 30 Kaiser (10.1016/j.jcis.2021.09.045_b0105) 1809; 120 Lee (10.1016/j.jcis.2021.09.045_b0175) 2011; 107 Cao (10.1016/j.jcis.2021.09.045_b0275) 2020; 124 Huang (10.1016/j.jcis.2021.09.045_b0240) 2021; 9 Lin (10.1016/j.jcis.2021.09.045_b0050) 2018; 30 Zheng (10.1016/j.jcis.2021.09.045_b0075) 2017; 139 Yang (10.1016/j.jcis.2021.09.045_b0120) 2018; 3 Nørskov (10.1016/j.jcis.2021.09.045_b0200) 2004; 108 Nørskov (10.1016/j.jcis.2021.09.045_b0310) 2004; 108 Lee (10.1016/j.jcis.2021.09.045_b0055) 2012; 3 |
References_xml | – volume: 56 start-page: 13944 year: 2017 end-page: 13960 ident: b0115 publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 5257 year: 2014 end-page: 5275 ident: b0035 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 339 year: 2018 end-page: 348 ident: b0425 publication-title: Nat. Catal. – volume: 21 start-page: 12826 year: 2019 end-page: 12836 ident: b0260 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 1995 year: 2018 end-page: 2007 ident: b0270 publication-title: ChemSusChem – volume: 6 start-page: 2662 year: 2014 end-page: 2670 ident: b0360 publication-title: ChemCatChem – volume: 97 start-page: 2635 year: 1992 end-page: 2643 ident: b0195 publication-title: J. Chem. Phys. – volume: 44 start-page: 2168 year: 2015 end-page: 2201 ident: b0045 publication-title: Chem. Soc. Rev. – volume: 107 year: 2011 ident: b0175 publication-title: Phys. Rev. Lett. – volume: 156 start-page: B126 year: 2009 ident: b0220 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 3340 year: 2019 end-page: 3345 ident: b0370 publication-title: Chem. Sci. – volume: 31 year: 2019 ident: b0080 publication-title: Adv. Mater – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: b0180 publication-title: Phys. Rev. B – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: b0310 publication-title: J. Phys. Chem. B – volume: 6 start-page: 13489 year: 2018 end-page: 13508 ident: b0040 publication-title: J. Mater. Chem. A – volume: 139 start-page: 3336 year: 2017 end-page: 3339 ident: b0075 publication-title: J. Am. Chem. Soc. – volume: 140 year: 2014 ident: b0355 publication-title: J. Chem. Phys. – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: b0190 publication-title: J. Comput. Chem. – volume: 2 start-page: 259 year: 2019 end-page: 268 ident: b0305 publication-title: Nat. Catal. – volume: 3 start-page: 1311 year: 2010 end-page: 1315 ident: b0205 publication-title: Energy Environ. Sci. – volume: 364 start-page: 1091 year: 2019 end-page: 1094 ident: b0160 publication-title: Science – volume: 323 start-page: 35 year: 2019 end-page: 43 ident: b0365 publication-title: Catal. Today – volume: 12 start-page: 18721 year: 2020 end-page: 18732 ident: b0325 publication-title: Nanoscale – volume: 10 start-page: 1903068 year: 2019 ident: b0155 publication-title: Adv. Energy Mater. – volume: 30 start-page: 1800005 year: 2018 ident: b0265 publication-title: Adv. Mater. – volume: 10 start-page: 1903815 year: 2019 ident: b0300 publication-title: Adv. Energy Mater. – volume: 3 start-page: 399 year: 2012 end-page: 404 ident: b0055 publication-title: J. Phys. Chem. Lett. – volume: 605 start-page: 155 year: 2022 end-page: 162 ident: b0405 publication-title: J. Colloid and Interface Sci. – volume: 8 start-page: 7472 year: 2020 end-page: 7479 ident: b0390 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 3590 year: 2021 end-page: 3599 ident: b0255 publication-title: ACS Sustainable Chem. Eng. – volume: 513 year: 2020 ident: b0140 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 52549 year: 2020 end-page: 52559 ident: b0215 publication-title: ACS Appl. Mater. Interfaces. – volume: 139 start-page: 12480 year: 2017 ident: b0095 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 111 year: 2020 end-page: 118 ident: b0170 publication-title: Energy Environ. Sci. – volume: 13 start-page: 1331 year: 2021 end-page: 1339 ident: b0210 publication-title: Nanoscale – volume: 56 start-page: 12687 year: 2020 end-page: 12697 ident: b0380 publication-title: Chem. Commun. – volume: 8 start-page: 2178 year: 1993 end-page: 2186 ident: b0005 publication-title: J. Electrochem. Soc. – volume: 118 start-page: 6706 year: 2014 end-page: 6718 ident: b0420 publication-title: J. Phys. Chem. C – volume: 20 start-page: 481 year: 2019 end-page: 488 ident: b0235 publication-title: Iscience. – volume: 34 start-page: 11868 year: 2019 end-page: 11871 ident: b0340 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1800419 year: 2019 ident: b0410 publication-title: Small Methods – volume: 30 year: 2018 ident: b0050 publication-title: Adv. Mater. – volume: 600 start-page: 711 year: 2021 end-page: 718 ident: bib427 publication-title: J. Colloid and Interface Science – volume: 8 start-page: 1701343 year: 2018 ident: b0130 publication-title: Adv. Energy Mater – volume: 660 start-page: 254 year: 2011 end-page: 260 ident: b0375 publication-title: J. Electroanal. Chem. – volume: 2 start-page: 6851 year: 2019 end-page: 6859 ident: b0415 publication-title: ACS Appl. Energy Mater. – volume: 6 start-page: 3530 year: 2019 end-page: 3548 ident: b0350 publication-title: ChemElectroChem. – volume: 8 start-page: 3097 year: 2020 end-page: 3108 ident: b0250 publication-title: J. Mater. Chem. A – volume: 142 start-page: 7425 year: 2020 end-page: 7433 ident: b0335 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 ident: b0110 publication-title: Adv. Mater. – volume: 590 start-page: 210 year: 2021 end-page: 218 ident: b0290 publication-title: J. Colloid Interface Sci. – volume: 49 start-page: 2658 year: 2016 end-page: 2668 ident: b0065 publication-title: Acc. Chem. Res. – volume: 30 year: 2020 ident: b0135 publication-title: Adv. Funct. Mater. – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: b0200 publication-title: J. Phys. Chem. B – volume: 55 start-page: 7975 year: 2010 end-page: 7981 ident: b0225 publication-title: Electrochim. Acta. – volume: 58 start-page: 1895 year: 2019 end-page: 1904 ident: b0070 publication-title: Inorg. Chem. – volume: 11 start-page: 1 year: 2019 end-page: 8 ident: b0150 publication-title: ChemCatChem – volume: 12 start-page: 24066 year: 2020 end-page: 24073 ident: b0400 publication-title: ACS Appl. Mater. Interfaces. – volume: 124 start-page: 11301 year: 2020 end-page: 11307 ident: b0275 publication-title: J. Phys. Chem. C – volume: 5 start-page: 2164 year: 2021 end-page: 2176 ident: b0330 publication-title: Joule – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: b0320 publication-title: J. Electroanal. Chem. – volume: 239 start-page: 116642 year: 2021 ident: b0245 publication-title: Chem. Eng. Sci. – volume: 6 start-page: 11446 year: 2018 end-page: 11452 ident: b0280 publication-title: J. Mater. Chem. A – volume: 28 start-page: 9640 year: 2019 end-page: 9645 ident: b0315 publication-title: Angew. Chemie – volume: 8 start-page: 7801 year: 2020 end-page: 7807 ident: b0285 publication-title: J. Mater. Chem. A – volume: 131 start-page: 15013 year: 2019 end-page: 15018 ident: b0125 publication-title: Angew. Chemie – volume: 6 start-page: 1900053 year: 2019 ident: b0030 publication-title: Adv. Sci. – volume: 104 start-page: 4245 year: 2004 end-page: 4270 ident: b0025 publication-title: Chem. Rev. – volume: 11 start-page: 601 year: 2016 end-page: 625 ident: b0060 publication-title: Nano Today – volume: 33 year: 2021 ident: b0090 publication-title: Adv. Mater. – volume: 9 start-page: 6442 year: 2021 end-page: 6450 ident: b0240 publication-title: J. Mater. Chem. A – volume: 3 start-page: 140 year: 2018 end-page: 147 ident: b0120 publication-title: Nat. Energy – volume: 57 start-page: 176 year: 2019 end-page: 185 ident: b0020 publication-title: Nano Energy – volume: 9 start-page: 5668 year: 2019 end-page: 5675 ident: b0165 publication-title: Catal Sci. Technol. – volume: 3 start-page: 1159 year: 2011 end-page: 1165 ident: b0230 publication-title: ChemCatChem – volume: 8 start-page: 4533 year: 2020 end-page: 4543 ident: b0100 publication-title: J. Mater. Chem. A – volume: 120 start-page: 11703 year: 1809 end-page: 11711 ident: b0105 publication-title: Chem. Rev – volume: 130 start-page: 112 year: 2018 end-page: 119 ident: b0085 publication-title: Carbon – volume: 38 start-page: 4040 year: 2004 end-page: 4046 ident: b0010 publication-title: Environ. Sci. Technol. – volume: 414 start-page: 332 year: 2001 end-page: 337 ident: b0015 publication-title: Nature – volume: 143 start-page: 13605 year: 2021 end-page: 13615 ident: b0345 publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0185 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 10418 year: 2021 end-page: 10428 ident: b0295 publication-title: Phys. Chem. Chem. Phys. – volume: 60 start-page: 1022 year: 2021 end-page: 1032 ident: b0145 publication-title: Angew. Chemie – volume: 136 start-page: 1320 year: 2014 end-page: 1326 ident: b0385 publication-title: J. Am. Chem. Soc. – volume: 156 start-page: B126 year: 2009 ident: 10.1016/j.jcis.2021.09.045_b0220 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3008005 – volume: 8 start-page: 7801 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0285 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01047B – volume: 124 start-page: 11301 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0275 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c01045 – volume: 136 start-page: 1320 year: 2014 ident: 10.1016/j.jcis.2021.09.045_b0385 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4060299 – volume: 513 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0140 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145777 – volume: 97 start-page: 2635 year: 1992 ident: 10.1016/j.jcis.2021.09.045_b0195 publication-title: J. Chem. Phys. doi: 10.1063/1.463940 – volume: 30 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0050 publication-title: Adv. Mater. – volume: 120 start-page: 11703 issue: 2020 year: 1809 ident: 10.1016/j.jcis.2021.09.045_b0105 publication-title: Chem. Rev. – volume: 57 start-page: 176 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0020 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.017 – volume: 108 start-page: 17886 year: 2004 ident: 10.1016/j.jcis.2021.09.045_b0200 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 56 start-page: 13944 year: 2017 ident: 10.1016/j.jcis.2021.09.045_b0115 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703864 – volume: 323 start-page: 35 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0365 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.07.036 – volume: 2 start-page: 259 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0305 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0237-3 – volume: 107 year: 2011 ident: 10.1016/j.jcis.2021.09.045_b0175 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 2164 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0330 publication-title: Joule doi: 10.1016/j.joule.2021.05.018 – volume: 32 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0110 publication-title: Adv. Mater. – volume: 10 start-page: 1903068 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0155 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903068 – volume: 142 start-page: 7425 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0335 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12642 – volume: 58 start-page: 1895 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0070 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02680 – volume: 21 start-page: 12826 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0260 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP02155H – volume: 12 start-page: 1995 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0270 publication-title: ChemSusChem doi: 10.1002/cssc.201802499 – volume: 6 start-page: 3530 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0350 publication-title: ChemElectroChem. doi: 10.1002/celc.201900448 – volume: 600 start-page: 711 year: 2021 ident: 10.1016/j.jcis.2021.09.045_bib427 publication-title: J. Colloid and Interface Science doi: 10.1016/j.jcis.2021.05.028 – volume: 28 start-page: 9640 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0315 publication-title: Angew. Chemie. doi: 10.1002/anie.201905241 – volume: 8 start-page: 1701343 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0130 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701343 – volume: 6 start-page: 1900053 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0030 publication-title: Adv. Sci. doi: 10.1002/advs.201900053 – volume: 13 start-page: 111 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0170 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03027A – volume: 49 start-page: 2658 year: 2016 ident: 10.1016/j.jcis.2021.09.045_b0065 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00346 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0150 publication-title: ChemCatChem. doi: 10.1002/cctc.201901643 – volume: 20 start-page: 481 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0235 publication-title: Iscience. doi: 10.1016/j.isci.2019.10.001 – volume: 590 start-page: 210 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0290 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.01.062 – volume: 6 start-page: 11446 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0280 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03302A – volume: 33 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0090 publication-title: Adv. Mater. – volume: 23 start-page: 10418 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0295 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP00690H – volume: 108 start-page: 17886 year: 2004 ident: 10.1016/j.jcis.2021.09.045_b0310 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 131 start-page: 15013 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0125 publication-title: Angew. Chemie. doi: 10.1002/ange.201906079 – volume: 3 start-page: 1800419 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0410 publication-title: Small Methods doi: 10.1002/smtd.201800419 – volume: 12 start-page: 18721 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0325 publication-title: Nanoscale doi: 10.1039/D0NR03339A – volume: 9 start-page: 6442 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0240 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA12567A – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.jcis.2021.09.045_b0190 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 143 start-page: 13605 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0345 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c04682 – volume: 364 start-page: 1091 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0160 publication-title: Science doi: 10.1126/science.aaw7515 – volume: 30 start-page: 1800005 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0265 publication-title: Adv. Mater. doi: 10.1002/adma.201800005 – volume: 139 start-page: 3336 year: 2017 ident: 10.1016/j.jcis.2021.09.045_b0075 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13100 – volume: 3 start-page: 1159 year: 2011 ident: 10.1016/j.jcis.2021.09.045_b0230 publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 55 start-page: 7975 year: 2010 ident: 10.1016/j.jcis.2021.09.045_b0225 publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2010.02.056 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jcis.2021.09.045_b0180 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 139 start-page: 12480 year: 2017 ident: 10.1016/j.jcis.2021.09.045_b0095 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05213 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jcis.2021.09.045_b0185 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 660 start-page: 254 year: 2011 ident: 10.1016/j.jcis.2021.09.045_b0375 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2010.10.004 – volume: 30 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0135 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 339 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0425 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 12 start-page: 52549 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0215 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.0c13597 – volume: 13 start-page: 1331 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0210 publication-title: Nanoscale doi: 10.1039/D0NR07580A – volume: 9 start-page: 3590 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0255 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c09192 – volume: 10 start-page: 3340 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0370 publication-title: Chem. Sci. doi: 10.1039/C8SC04521F – volume: 140 year: 2014 ident: 10.1016/j.jcis.2021.09.045_b0355 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 3 start-page: 399 year: 2012 ident: 10.1016/j.jcis.2021.09.045_b0055 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2016507 – volume: 34 start-page: 11868 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0340 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904614 – volume: 239 start-page: 116642 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0245 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116642 – volume: 6 start-page: 13489 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0040 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02985G – volume: 607 start-page: 83 year: 2007 ident: 10.1016/j.jcis.2021.09.045_b0320 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 9 start-page: 5668 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0165 publication-title: Catal Sci. Technol. doi: 10.1039/C9CY01131E – volume: 8 start-page: 7472 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0390 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01908 – volume: 12 start-page: 24066 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0400 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.0c06062 – volume: 8 start-page: 4533 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0100 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13599E – volume: 43 start-page: 5257 year: 2014 ident: 10.1016/j.jcis.2021.09.045_b0035 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00015C – volume: 10 start-page: 1903815 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0300 publication-title: Adv. Energy Mater. – volume: 118 start-page: 6706 year: 2014 ident: 10.1016/j.jcis.2021.09.045_b0420 publication-title: J. Phys. Chem. C doi: 10.1021/jp4100608 – volume: 130 start-page: 112 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0085 publication-title: Carbon doi: 10.1016/j.carbon.2017.12.121 – volume: 8 start-page: 2178 year: 1993 ident: 10.1016/j.jcis.2021.09.045_b0005 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2220792 – volume: 2 start-page: 6851 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0415 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01329 – volume: 38 start-page: 4040 year: 2004 ident: 10.1016/j.jcis.2021.09.045_b0010 publication-title: Environ. Sci. Technol. doi: 10.1021/es0499344 – volume: 104 start-page: 4245 year: 2004 ident: 10.1016/j.jcis.2021.09.045_b0025 publication-title: Chem. Rev. doi: 10.1021/cr020730k – volume: 44 start-page: 2168 year: 2015 ident: 10.1016/j.jcis.2021.09.045_b0045 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00484A – volume: 11 start-page: 601 year: 2016 ident: 10.1016/j.jcis.2021.09.045_b0060 publication-title: Nano Today doi: 10.1016/j.nantod.2016.09.001 – volume: 31 year: 2019 ident: 10.1016/j.jcis.2021.09.045_b0080 publication-title: Adv. Mater. – volume: 8 start-page: 3097 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0250 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12255A – volume: 3 start-page: 140 year: 2018 ident: 10.1016/j.jcis.2021.09.045_b0120 publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 605 start-page: 155 year: 2022 ident: 10.1016/j.jcis.2021.09.045_b0405 publication-title: J. Colloid and Interface Sci. doi: 10.1016/j.jcis.2021.07.087 – volume: 414 start-page: 332 year: 2001 ident: 10.1016/j.jcis.2021.09.045_b0015 publication-title: Nature doi: 10.1038/35104599 – volume: 60 start-page: 1022 year: 2021 ident: 10.1016/j.jcis.2021.09.045_b0145 publication-title: Angew. Chemie. doi: 10.1002/anie.202012329 – volume: 56 start-page: 12687 year: 2020 ident: 10.1016/j.jcis.2021.09.045_b0380 publication-title: Chem. Commun. doi: 10.1039/D0CC04752J – volume: 3 start-page: 1311 year: 2010 ident: 10.1016/j.jcis.2021.09.045_b0205 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 6 start-page: 2662 year: 2014 ident: 10.1016/j.jcis.2021.09.045_b0360 publication-title: ChemCatChem doi: 10.1002/cctc.201402248 |
SSID | ssj0011559 |
Score | 2.6371477 |
Snippet | [Display omitted]
The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen... The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1005 |
SubjectTerms | Bifunctional catalysts catalytic activity density functional theory DFT electrochemistry energy conversion graphene ORR/OER oxygen oxygen production renewable energy sources Single atom catalysts TM-N/C materials |
Title | Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study |
URI | https://dx.doi.org/10.1016/j.jcis.2021.09.045 https://www.proquest.com/docview/2577733949 https://www.proquest.com/docview/2636435308 |
Volume | 607 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqI8qgGiRsKmzh2HHOrVq22ILbSQqXerPgRkapkV9vtoZee-7OZcZwKEPTAJZGscWJ57HnYM98w9q5W3vFSoZPTCokOSttm2uUy03XuUJ9YXueU7_xlXs1OxKdTebrFpmMuDIVVJtk_yPQorVPLJM3mZNV1lOOLu00R-gx57THNSghFq_zD9W2YR0HXbkOYR5ERdUqcGWK8zlxHkN28iFinlNL0d-X0h5iOuufwMXuUjEbYH8b1hG2Ffofdn4612nbYw19gBZ-ym6_4Og9wtAZ0qX8AMvb7ch08dD2srtZUp8dlcwF-ucLGCFmNEg-aC2gAh4Afxf5gO9J5w1EhpGo58bDn6mIDaOoCmo5wvFhMjg8WH7Gni_Uh0tkiRNjaZ-zk8ODbdJaliguZEyXf4LNCESCtth5dVx-0tU2D2x63UkBLw3OP7h3aMMIXlWxrQidsLfeaLtusqKvyOdvul314wcA60QZluW48F5VXTc5xhzurg6S7Tr3LinGqjUtw5FQV49yMcWdnhthjiD0m1wbZs8ve3_ZZDWAcd1LLkYPmtyVlUFvc2e_tyG6DM04XKE0flpdIJJVSZalp9P-kqUqcIFnm9cv__P8r9oBTjkUMDX_Ntjfry_AGLZ-N3YtLe4_d2z_6PJv_BI0lAno |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcKA9VIW2Kn3QqdRbZcVZe21vbygCJQWClILEbeV9WBhRJwrhwD_oz-6MvUalohx6sSVrx17teOexM_MNwJcid1YkOTk5VSrJQamqSNlYRqqILekTI4qY651PZtnkPP1-IS82YNzXwnBaZZD9nUxvpXV4MgyrOVzWNdf40m7LGX2GvXYus9pkdCo5gM396dFkdh9M4Mhbl-kxipgg1M50aV5XtmbUbjFq4U65qulx_fSXpG7Vz-FLeBHsRtzvprYNG77Zga1x365tB57_gSz4Cn79oNu1x-kKyav-icTby8XKO6wbXN6tuFWPjWYpusWSHrao1ST0sLzBEmkK9FKiR1Oz2utOCzE0zGnPe-5u1kjWLpL1iKfz-fD0YP6NKG3bIiIcL2KLXPsazg8PzsaTKDRdiGyaiDVdM5IC0ijjyHt1XhlTlrTzaTd5MjaccOThkRmTulEmq4IBCisjnOJ4m0mLLHkDg2bR-LeAxqaVz41QpRNp5vIyFrTJrVFecrhT7cKoX2ptAyI5N8a41n3q2ZVm9mhmj46VJvbswtd7mmWHx_HkaNlzUD_4qzQpjCfpPvfs1rTiHEMpG7-4pUEyz_MkUTz7f47JElogmcTFu__8_ifYmpydHOvj6ezoPTwTXHLRZop_gMF6des_kiG0NnvhR_8NYUsFKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Ir+atom+anchored+in+pyrrolic-N4+doped+graphene+as+a+promising+bifunctional+electrocatalyst+for+the+ORR%2FOER%3A+a+computational+study&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Xinyi&rft.au=Su%2C+Zhanhua&rft.au=Zhao%2C+Zhifeng&rft.au=Cai%2C+Qinghai&rft.date=2022-02-01&rft.issn=0021-9797&rft.volume=607+p.1005-1013&rft.spage=1005&rft.epage=1013&rft_id=info:doi/10.1016%2Fj.jcis.2021.09.045&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |