Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study

[Display omitted] The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 607; no. Pt 2; pp. 1005 - 1013
Main Authors Li, Xinyi, Su, Zhanhua, Zhao, Zhifeng, Cai, Qinghai, Li, Yafei, Zhao, Jingxiang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2021.09.045