Using Floating-Gate Memory to Train Ideal Accuracy Neural Networks

Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accurac...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on exploratory solid-state computational devices and circuits Vol. 5; no. 1; pp. 52 - 57
Main Authors Agarwal, Sapan, Garland, Diana, Niroula, John, Jacobs-Gedrim, Robin B., Hsia, Alex, Van Heukelom, Michael S., Fuller, Elliot, Draper, Bruce, Marinella, Matthew J.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by 120×, operate 2.1× faster, and require 5× lower area than an optimized SRAM-based ASIC.
AbstractList Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by 120×, operate 2.1× faster, and require 5× lower area than an optimized SRAM-based ASIC.
We report that floating gate SONOS (Silicon-Oxygen-Nitrogen-Oxygen-Silicon) transistors can be used to train neural networks to ideal accuracies that match those of floating point digital weights on the MNIST dataset when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by 120X, operate 2.1X faster and require 5X lower area than an optimized SRAM based ASIC.
Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by [Formula Omitted], operate [Formula Omitted] faster, and require [Formula Omitted] lower area than an optimized SRAM-based ASIC.
Author Hsia, Alex
Draper, Bruce
Garland, Diana
Van Heukelom, Michael S.
Marinella, Matthew J.
Niroula, John
Jacobs-Gedrim, Robin B.
Agarwal, Sapan
Fuller, Elliot
Author_xml – sequence: 1
  givenname: Sapan
  orcidid: 0000-0002-3676-6986
  surname: Agarwal
  fullname: Agarwal, Sapan
  email: sagarwa@sandia.gov
  organization: Sandia National Laboratories, Livermore, CA, USA
– sequence: 2
  givenname: Diana
  orcidid: 0000-0001-7742-6796
  surname: Garland
  fullname: Garland, Diana
  organization: Sandia National Laboratories, Albuquerque, NM, USA
– sequence: 3
  givenname: John
  surname: Niroula
  fullname: Niroula, John
  organization: Sandia National Laboratories, Albuquerque, NM, USA
– sequence: 4
  givenname: Robin B.
  orcidid: 0000-0002-6614-984X
  surname: Jacobs-Gedrim
  fullname: Jacobs-Gedrim, Robin B.
  organization: Sandia National Laboratories, Albuquerque, NM, USA
– sequence: 5
  givenname: Alex
  surname: Hsia
  fullname: Hsia, Alex
  organization: Sandia National Laboratories, Albuquerque, NM, USA
– sequence: 6
  givenname: Michael S.
  surname: Van Heukelom
  fullname: Van Heukelom, Michael S.
  organization: Sandia National Laboratories, Albuquerque, NM, USA
– sequence: 7
  givenname: Elliot
  orcidid: 0000-0001-7912-8688
  surname: Fuller
  fullname: Fuller, Elliot
  organization: Sandia National Laboratories, Livermore, CA, USA
– sequence: 8
  givenname: Bruce
  surname: Draper
  fullname: Draper, Bruce
  organization: Sandia National Laboratories, Albuquerque, NM, USA
– sequence: 9
  givenname: Matthew J.
  orcidid: 0000-0002-6537-1836
  surname: Marinella
  fullname: Marinella, Matthew J.
  organization: Sandia National Laboratories, Albuquerque, NM, USA
BackLink https://www.osti.gov/servlets/purl/1501628$$D View this record in Osti.gov
BookMark eNpNUV1v1DAQtFCRKEf_ALxE8Jzr-iNO_FiutBwq8NJKvFnOZl1ypHGxfUL373Gbqqq00qxWM6NZzVt2NIeZGHvPYc05mNNvvzbnm7UAbtbCgFBgXrFjIYWpjZD86MX-hp2ktAMA3rSqbc0x-3yTxvm2upiCy2WpL12m6jvdhXiocqiuoxvnajuQm6ozxH10eKh-UMGpQP4X4p_0jr32bkp08oQrdnPx5Xrztb76ebndnF3VqKTIdc-BAHstvTZaDNT1nowfqGnbThF6cAMZzUUnkQQoVe7ggAxC3xWGliu2XXyH4Hb2Po53Lh5scKN9PIR4a13MI05kvWk7g4o6KVAp33dDC6C594rKSCxeHxevkPJoE46Z8DeGeSbMljfAdcmxYp8W0n0Mf_eUst2FfZzLj1aIEhUazZvCEgsLY0gpkn-OxsE-9GMf-7EP_dinforowyIaiehZ0GktNYD8DzPEi1A
CODEN IJESQ5
CitedBy_id crossref_primary_10_3389_fncom_2023_1114651
crossref_primary_10_3389_fnins_2021_636127
crossref_primary_10_1108_MI_01_2021_0004
crossref_primary_10_1016_j_chip_2023_100059
crossref_primary_10_1002_aisy_202200070
crossref_primary_10_1109_TCSI_2021_3119648
crossref_primary_10_1016_j_morpho_2023_100723
crossref_primary_10_25046_aj060116
crossref_primary_10_1002_adma_202207595
crossref_primary_10_1002_smll_202100242
crossref_primary_10_1147_JRD_2019_2942285
crossref_primary_10_1038_s41928_023_01053_4
crossref_primary_10_1109_TNS_2021_3058548
crossref_primary_10_1016_j_heliyon_2024_e26496
crossref_primary_10_1088_1361_6641_aceea6
crossref_primary_10_1002_adma_202204771
crossref_primary_10_1002_aisy_202000156
crossref_primary_10_1109_TNS_2023_3318511
crossref_primary_10_1177_10943420231178537
crossref_primary_10_1063_1_5143815
crossref_primary_10_1088_1361_6528_aba70f
crossref_primary_10_1155_2024_5162989
crossref_primary_10_1021_acsami_0c08802
Cites_doi 10.1109/ECTC.2016.205
10.1109/IEDM.2017.8268341
10.1109/TVLSI.2013.2245351
10.1109/JSSC.2015.2467186
10.1038/nmat4856
10.23919/VLSIT.2017.7998171
10.1109/IMW.2010.5488310
10.1016/j.procs.2015.09.156
10.1002/adma.201604310
10.1109/IJCNN.2016.7727298
10.1109/JETCAS.2018.2796379
10.1109/TED.2015.2439635
10.23919/VLSIT.2017.7998164
10.3389/fnins.2015.00484
10.1109/TVLSI.2018.2882194
10.1109/ICRC.2017.8123642
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
CorporateAuthor Sandia National Lab. (SNL-CA), Livermore, CA (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States)
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
OIOZB
OTOTI
DOA
DOI 10.1109/JXCDC.2019.2902409
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList


Technology Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9231
EndPage 57
ExternalDocumentID oai_doaj_org_article_f9789c4e832c44fb8d70061ff4ef4e3c
1501628
10_1109_JXCDC_2019_2902409
8663600
Genre orig-research
GrantInformation_xml – fundername: Sandia National Laboratories
  funderid: 10.13039/100006234
GroupedDBID 0R~
6IK
97E
AAJGR
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IEDLZ
IFIPE
IPLJI
JAVBF
M~E
O9-
OCL
OK1
RIA
RIC
RIE
RIG
AAYXX
CITATION
7SP
8FD
L7M
OIOZB
OTOTI
ID FETCH-LOGICAL-c432t-b10e0cb63f6962de8bfe9fde57784ecf0ade961283ce20445770a0e9c0b878463
IEDL.DBID RIE
ISSN 2329-9231
IngestDate Tue Oct 22 15:10:20 EDT 2024
Fri May 19 00:39:20 EDT 2023
Thu Oct 10 16:01:08 EDT 2024
Fri Aug 23 02:26:29 EDT 2024
Wed Jun 26 19:27:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-b10e0cb63f6962de8bfe9fde57784ecf0ade961283ce20445770a0e9c0b878463
Notes AC04-94AL85000; NA0003525
USDOE National Nuclear Security Administration (NNSA)
SAND-2019-0981J
ORCID 0000-0001-7742-6796
0000-0001-7912-8688
0000-0002-6537-1836
0000-0002-6614-984X
0000-0002-3676-6986
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8663600
PQID 2296105615
PQPubID 4437230
PageCount 6
ParticipantIDs ieee_primary_8663600
proquest_journals_2296105615
osti_scitechconnect_1501628
crossref_primary_10_1109_JXCDC_2019_2902409
doaj_primary_oai_doaj_org_article_f9789c4e832c44fb8d70061ff4ef4e3c
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
– name: United States
PublicationTitle IEEE journal on exploratory solid-state computational devices and circuits
PublicationTitleAbbrev JESSCDC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
taito (ref14) 2016; 51
ref12
ref15
lecun (ref11) 2018
ref10
ref2
ref1
ref17
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1109/ECTC.2016.205
– ident: ref9
  doi: 10.1109/IEDM.2017.8268341
– ident: ref10
  doi: 10.1109/TVLSI.2013.2245351
– volume: 51
  start-page: 213
  year: 2016
  ident: ref14
  article-title: A 28 nm embedded split-gate MONOS (SG-MONOS) flash macro for automotive achieving 6.4 GB/s read throughput by 200 MHz no-wait read operation and 2.0 MB/s write throughput at Tj of 170°C
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2015.2467186
  contributor:
    fullname: taito
– ident: ref8
  doi: 10.1038/nmat4856
– ident: ref13
  doi: 10.23919/VLSIT.2017.7998171
– ident: ref15
  doi: 10.1109/IMW.2010.5488310
– year: 2018
  ident: ref11
  publication-title: The MNIST Database of Handwritten Digits
  contributor:
    fullname: lecun
– ident: ref12
  doi: 10.1016/j.procs.2015.09.156
– ident: ref7
  doi: 10.1002/adma.201604310
– ident: ref3
  doi: 10.1109/IJCNN.2016.7727298
– ident: ref1
  doi: 10.1109/JETCAS.2018.2796379
– ident: ref4
  doi: 10.1109/TED.2015.2439635
– ident: ref5
  doi: 10.23919/VLSIT.2017.7998164
– ident: ref2
  doi: 10.3389/fnins.2015.00484
– ident: ref17
  doi: 10.1109/TVLSI.2018.2882194
– ident: ref6
  doi: 10.1109/ICRC.2017.8123642
SSID ssj0001574779
Score 2.3417647
Snippet Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of...
We report that floating gate SONOS (Silicon-Oxygen-Nitrogen-Oxygen-Silicon) transistors can be used to train neural networks to ideal accuracies that match...
SourceID doaj
osti
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 52
SubjectTerms Analog
flash
floating gate
Floating point arithmetic
Handwriting
Laboratories
Logic gates
MATHEMATICS AND COMPUTING
memristor
neural network
neural network (NN)
Neural networks
neuromorphic
Nonvolatile memory
Semiconductor devices
Silicon
silicon-oxygen-nitrogen-oxygen-silicon (SONOS)
SONOS
SONOS devices
Static random access memory
Training
Transistors
Weight
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIjwpQxsKODaTuoboVCVSmWiUjcrvtgTahGEgX_PXZJWRQwsSJGiWJblvPPHu-T8Togrj8RrZZCZRW3IQYEiK431WU6LJZTa-AB8Gnn6XIxnZjLP5xupvjgmrJUHboG7jeTmAJpAIw-Nid5WA952YzSBLo3N6ithw5lqzwcTTR7A6pSMhNvJfPgw5FAuuFHAwl7wYydqBPu7DCt0W9L8-rU6N1vOaF_sdVwxvWv7eCC2wuJQ7G4oCPbEffPLPx29LkuOX874Y1g65ejZr7Repi-cACJ9qgI3g_j5XuJXynoc9PzcBoB_HInZ6PFlOM66tAgZGq3qzPcJW_SFjgUUqgrWxwCxCvlgYE3AKMsqABEXqzEoaQyVy1IGQOkt1Sj0sdheLBfhRKRa96OOiKqEyuSIEPtBV5IoilXaICbiegWRe2vVL1zjNUhwDaCOAXUdoIm4ZxTXNVm5uikge7rOnu4veyaixzZYN2ILVjSTiThjmzjiBSxuixwFhLUjOtsvlE3E-cpUrpuDH04pQoEdpPz0Pzp2Jnb4ZdswsXOxXb9_hgsiJLW_bMbeN5T42e0
  priority: 102
  providerName: Directory of Open Access Journals
Title Using Floating-Gate Memory to Train Ideal Accuracy Neural Networks
URI https://ieeexplore.ieee.org/document/8663600
https://www.proquest.com/docview/2296105615
https://www.osti.gov/servlets/purl/1501628
https://doaj.org/article/f9789c4e832c44fb8d70061ff4ef4e3c
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT3AASkEsLVUOvUG23thJPEe6dNVW2p5aaW9WPBlfQBvUZg_l1zPjZJfPA1KkJJblWDP-eOM8Pyt1GpBxrSadOzSWAxSo8sa6kJc8WEJjbCCQ3cjLm-ryzl6vytWe-rjbC0NEiXxGU3lM__LbDjeyVHbmKlG34gD9SQ0w7NX6uZ5SMjCuYbsvRsPZ9Wr-eS7kLZgWIFJe8NvckyT6xzNV-NZxj_prPE6TzOKFWm6rN3BLvkw3fZji9z-UG_-3_i_V8xFtZp-G5nGg9mj9Sj37RYPwUJ0n0kC2-No1woDOZTktWwr_9jHru-xWjpDIrlqSYhA39w0-ZqLowe83A4X84bW6W1zczi_z8WCFHK0p-jzM2DsYKhMrqIqWXIgEsaWyrp0ljLppCRj6OINUaGs5XTeaAHVwnKMyb9T-ulvTW5UZM4smIhYNtLZEhDgj02oGOa4wFnGiPmxN7r8N-hk-xR0afHKQFwf50UETdS5e2eUU7euUwGb0Y1fykQNfQEs8FqG1Mbi2FiAWoyW-DH_yUEy_K2S0-kQdiY89IwuRx0XhEWHvGRDPqsJN1PHW9X7sxQ--KNgKEmKV7_5d5pF6KtUfqGPHar-_39B7Bil9OEnB_Ulqoz8AyU_juA
link.rule.ids 230,315,783,787,799,867,888,2109,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLamcQAOMBiIsgE5cIN0buy49nHrqLqx9tRJvVnxy_NlqEFbehh_Pe85aWHAASlSEity4vf843vO589CfAxAuFaizC0oTQGKM3mlbchL6ixdpXRAx6uR5wszu9aXq3K1Jz7v1sIgYiKf4ZAv07_8uoENT5WdWMPqVhSgPyJcbU23WuvXjEpJ0HjstitjpDu5XE3OJ0zfcsPCsZiXezD6JJH-flcVOjXUpv7qkdMwM30u5tsP7NglN8NNG4bw4w_txv8twYF41uPN7LSrIC_EHq5fiqe_qRAeirNEG8im35qKOdA5T6hlc2bg3mdtky15E4nsokbOBmBzW8F9xpoedL_oSOR3r8T19MtyMsv7rRVy0Kpo8zAi_0AwKhpnihptiOhijeV4bDVClFWNjsCPVYCF1JrSZSXRgQyWnjDqtdhfN2t8IzKlRlFFgKJytS4BXByhqiXBHFsoDTAQn7Ym9987BQ2fIg_pfHKQZwf53kEDccZe2T3J6tcpgczo-8bkI4W-DjRSbwRax2DrMUOxGDXSoeiVh2z6XSa91QfiiH3sCVuwQC4wkwhaT5B4ZAo7EMdb1_u-Hd_5oiArcJBVvv13nh_E49lyfuWvLhZfj8QTLkpHJDsW--3tBt8RZGnD-1RTfwJ2aOYO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Floating+Gate+Memory+to+Train+Ideal+Accuracy+Neural+Networks&rft.jtitle=IEEE+journal+on+exploratory+solid-state+computational+devices+and+circuits&rft.au=Agarwal%2C+Sapan&rft.au=Garland%2C+Diana&rft.au=Niroula%2C+John&rft.au=Jacobs-Gedrim%2C+Robin+B.&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=2329-9231&rft.eissn=2329-9231&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1109%2FJXCDC.2019.2902409&rft.externalDocID=1501628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9231&client=summon