Using Floating-Gate Memory to Train Ideal Accuracy Neural Networks
Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accurac...
Saved in:
Published in | IEEE journal on exploratory solid-state computational devices and circuits Vol. 5; no. 1; pp. 52 - 57 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by 120×, operate 2.1× faster, and require 5× lower area than an optimized SRAM-based ASIC. |
---|---|
AbstractList | Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by 120×, operate 2.1× faster, and require 5× lower area than an optimized SRAM-based ASIC. We report that floating gate SONOS (Silicon-Oxygen-Nitrogen-Oxygen-Silicon) transistors can be used to train neural networks to ideal accuracies that match those of floating point digital weights on the MNIST dataset when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by 120X, operate 2.1X faster and require 5X lower area than an optimized SRAM based ASIC. Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by [Formula Omitted], operate [Formula Omitted] faster, and require [Formula Omitted] lower area than an optimized SRAM-based ASIC. |
Author | Hsia, Alex Draper, Bruce Garland, Diana Van Heukelom, Michael S. Marinella, Matthew J. Niroula, John Jacobs-Gedrim, Robin B. Agarwal, Sapan Fuller, Elliot |
Author_xml | – sequence: 1 givenname: Sapan orcidid: 0000-0002-3676-6986 surname: Agarwal fullname: Agarwal, Sapan email: sagarwa@sandia.gov organization: Sandia National Laboratories, Livermore, CA, USA – sequence: 2 givenname: Diana orcidid: 0000-0001-7742-6796 surname: Garland fullname: Garland, Diana organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 3 givenname: John surname: Niroula fullname: Niroula, John organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 4 givenname: Robin B. orcidid: 0000-0002-6614-984X surname: Jacobs-Gedrim fullname: Jacobs-Gedrim, Robin B. organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 5 givenname: Alex surname: Hsia fullname: Hsia, Alex organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 6 givenname: Michael S. surname: Van Heukelom fullname: Van Heukelom, Michael S. organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 7 givenname: Elliot orcidid: 0000-0001-7912-8688 surname: Fuller fullname: Fuller, Elliot organization: Sandia National Laboratories, Livermore, CA, USA – sequence: 8 givenname: Bruce surname: Draper fullname: Draper, Bruce organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 9 givenname: Matthew J. orcidid: 0000-0002-6537-1836 surname: Marinella fullname: Marinella, Matthew J. organization: Sandia National Laboratories, Albuquerque, NM, USA |
BackLink | https://www.osti.gov/servlets/purl/1501628$$D View this record in Osti.gov |
BookMark | eNpNUV1v1DAQtFCRKEf_ALxE8Jzr-iNO_FiutBwq8NJKvFnOZl1ypHGxfUL373Gbqqq00qxWM6NZzVt2NIeZGHvPYc05mNNvvzbnm7UAbtbCgFBgXrFjIYWpjZD86MX-hp2ktAMA3rSqbc0x-3yTxvm2upiCy2WpL12m6jvdhXiocqiuoxvnajuQm6ozxH10eKh-UMGpQP4X4p_0jr32bkp08oQrdnPx5Xrztb76ebndnF3VqKTIdc-BAHstvTZaDNT1nowfqGnbThF6cAMZzUUnkQQoVe7ggAxC3xWGliu2XXyH4Hb2Po53Lh5scKN9PIR4a13MI05kvWk7g4o6KVAp33dDC6C594rKSCxeHxevkPJoE46Z8DeGeSbMljfAdcmxYp8W0n0Mf_eUst2FfZzLj1aIEhUazZvCEgsLY0gpkn-OxsE-9GMf-7EP_dinforowyIaiehZ0GktNYD8DzPEi1A |
CODEN | IJESQ5 |
CitedBy_id | crossref_primary_10_3389_fncom_2023_1114651 crossref_primary_10_3389_fnins_2021_636127 crossref_primary_10_1108_MI_01_2021_0004 crossref_primary_10_1016_j_chip_2023_100059 crossref_primary_10_1002_aisy_202200070 crossref_primary_10_1109_TCSI_2021_3119648 crossref_primary_10_1016_j_morpho_2023_100723 crossref_primary_10_25046_aj060116 crossref_primary_10_1002_adma_202207595 crossref_primary_10_1002_smll_202100242 crossref_primary_10_1147_JRD_2019_2942285 crossref_primary_10_1038_s41928_023_01053_4 crossref_primary_10_1109_TNS_2021_3058548 crossref_primary_10_1016_j_heliyon_2024_e26496 crossref_primary_10_1088_1361_6641_aceea6 crossref_primary_10_1002_adma_202204771 crossref_primary_10_1002_aisy_202000156 crossref_primary_10_1109_TNS_2023_3318511 crossref_primary_10_1177_10943420231178537 crossref_primary_10_1063_1_5143815 crossref_primary_10_1088_1361_6528_aba70f crossref_primary_10_1155_2024_5162989 crossref_primary_10_1021_acsami_0c08802 |
Cites_doi | 10.1109/ECTC.2016.205 10.1109/IEDM.2017.8268341 10.1109/TVLSI.2013.2245351 10.1109/JSSC.2015.2467186 10.1038/nmat4856 10.23919/VLSIT.2017.7998171 10.1109/IMW.2010.5488310 10.1016/j.procs.2015.09.156 10.1002/adma.201604310 10.1109/IJCNN.2016.7727298 10.1109/JETCAS.2018.2796379 10.1109/TED.2015.2439635 10.23919/VLSIT.2017.7998164 10.3389/fnins.2015.00484 10.1109/TVLSI.2018.2882194 10.1109/ICRC.2017.8123642 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
CorporateAuthor | Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M OIOZB OTOTI DOA |
DOI | 10.1109/JXCDC.2019.2902409 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2329-9231 |
EndPage | 57 |
ExternalDocumentID | oai_doaj_org_article_f9789c4e832c44fb8d70061ff4ef4e3c 1501628 10_1109_JXCDC_2019_2902409 8663600 |
Genre | orig-research |
GrantInformation_xml | – fundername: Sandia National Laboratories funderid: 10.13039/100006234 |
GroupedDBID | 0R~ 6IK 97E AAJGR ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IEDLZ IFIPE IPLJI JAVBF M~E O9- OCL OK1 RIA RIC RIE RIG AAYXX CITATION 7SP 8FD L7M OIOZB OTOTI |
ID | FETCH-LOGICAL-c432t-b10e0cb63f6962de8bfe9fde57784ecf0ade961283ce20445770a0e9c0b878463 |
IEDL.DBID | RIE |
ISSN | 2329-9231 |
IngestDate | Tue Oct 22 15:10:20 EDT 2024 Fri May 19 00:39:20 EDT 2023 Thu Oct 10 16:01:08 EDT 2024 Fri Aug 23 02:26:29 EDT 2024 Wed Jun 26 19:27:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-b10e0cb63f6962de8bfe9fde57784ecf0ade961283ce20445770a0e9c0b878463 |
Notes | AC04-94AL85000; NA0003525 USDOE National Nuclear Security Administration (NNSA) SAND-2019-0981J |
ORCID | 0000-0001-7742-6796 0000-0001-7912-8688 0000-0002-6537-1836 0000-0002-6614-984X 0000-0002-3676-6986 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8663600 |
PQID | 2296105615 |
PQPubID | 4437230 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8663600 proquest_journals_2296105615 osti_scitechconnect_1501628 crossref_primary_10_1109_JXCDC_2019_2902409 doaj_primary_oai_doaj_org_article_f9789c4e832c44fb8d70061ff4ef4e3c |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway – name: United States |
PublicationTitle | IEEE journal on exploratory solid-state computational devices and circuits |
PublicationTitleAbbrev | JESSCDC |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 taito (ref14) 2016; 51 ref12 ref15 lecun (ref11) 2018 ref10 ref2 ref1 ref17 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref16 doi: 10.1109/ECTC.2016.205 – ident: ref9 doi: 10.1109/IEDM.2017.8268341 – ident: ref10 doi: 10.1109/TVLSI.2013.2245351 – volume: 51 start-page: 213 year: 2016 ident: ref14 article-title: A 28 nm embedded split-gate MONOS (SG-MONOS) flash macro for automotive achieving 6.4 GB/s read throughput by 200 MHz no-wait read operation and 2.0 MB/s write throughput at Tj of 170°C publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2015.2467186 contributor: fullname: taito – ident: ref8 doi: 10.1038/nmat4856 – ident: ref13 doi: 10.23919/VLSIT.2017.7998171 – ident: ref15 doi: 10.1109/IMW.2010.5488310 – year: 2018 ident: ref11 publication-title: The MNIST Database of Handwritten Digits contributor: fullname: lecun – ident: ref12 doi: 10.1016/j.procs.2015.09.156 – ident: ref7 doi: 10.1002/adma.201604310 – ident: ref3 doi: 10.1109/IJCNN.2016.7727298 – ident: ref1 doi: 10.1109/JETCAS.2018.2796379 – ident: ref4 doi: 10.1109/TED.2015.2439635 – ident: ref5 doi: 10.23919/VLSIT.2017.7998164 – ident: ref2 doi: 10.3389/fnins.2015.00484 – ident: ref17 doi: 10.1109/TVLSI.2018.2882194 – ident: ref6 doi: 10.1109/ICRC.2017.8123642 |
SSID | ssj0001574779 |
Score | 2.3417647 |
Snippet | Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of... We report that floating gate SONOS (Silicon-Oxygen-Nitrogen-Oxygen-Silicon) transistors can be used to train neural networks to ideal accuracies that match... |
SourceID | doaj osti proquest crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 52 |
SubjectTerms | Analog flash floating gate Floating point arithmetic Handwriting Laboratories Logic gates MATHEMATICS AND COMPUTING memristor neural network neural network (NN) Neural networks neuromorphic Nonvolatile memory Semiconductor devices Silicon silicon-oxygen-nitrogen-oxygen-silicon (SONOS) SONOS SONOS devices Static random access memory Training Transistors Weight |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIjwpQxsKODaTuoboVCVSmWiUjcrvtgTahGEgX_PXZJWRQwsSJGiWJblvPPHu-T8Togrj8RrZZCZRW3IQYEiK431WU6LJZTa-AB8Gnn6XIxnZjLP5xupvjgmrJUHboG7jeTmAJpAIw-Nid5WA952YzSBLo3N6ithw5lqzwcTTR7A6pSMhNvJfPgw5FAuuFHAwl7wYydqBPu7DCt0W9L8-rU6N1vOaF_sdVwxvWv7eCC2wuJQ7G4oCPbEffPLPx29LkuOX874Y1g65ejZr7Repi-cACJ9qgI3g_j5XuJXynoc9PzcBoB_HInZ6PFlOM66tAgZGq3qzPcJW_SFjgUUqgrWxwCxCvlgYE3AKMsqABEXqzEoaQyVy1IGQOkt1Sj0sdheLBfhRKRa96OOiKqEyuSIEPtBV5IoilXaICbiegWRe2vVL1zjNUhwDaCOAXUdoIm4ZxTXNVm5uikge7rOnu4veyaixzZYN2ILVjSTiThjmzjiBSxuixwFhLUjOtsvlE3E-cpUrpuDH04pQoEdpPz0Pzp2Jnb4ZdswsXOxXb9_hgsiJLW_bMbeN5T42e0 priority: 102 providerName: Directory of Open Access Journals |
Title | Using Floating-Gate Memory to Train Ideal Accuracy Neural Networks |
URI | https://ieeexplore.ieee.org/document/8663600 https://www.proquest.com/docview/2296105615 https://www.osti.gov/servlets/purl/1501628 https://doaj.org/article/f9789c4e832c44fb8d70061ff4ef4e3c |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT3AASkEsLVUOvUG23thJPEe6dNVW2p5aaW9WPBlfQBvUZg_l1zPjZJfPA1KkJJblWDP-eOM8Pyt1GpBxrSadOzSWAxSo8sa6kJc8WEJjbCCQ3cjLm-ryzl6vytWe-rjbC0NEiXxGU3lM__LbDjeyVHbmKlG34gD9SQ0w7NX6uZ5SMjCuYbsvRsPZ9Wr-eS7kLZgWIFJe8NvckyT6xzNV-NZxj_prPE6TzOKFWm6rN3BLvkw3fZji9z-UG_-3_i_V8xFtZp-G5nGg9mj9Sj37RYPwUJ0n0kC2-No1woDOZTktWwr_9jHru-xWjpDIrlqSYhA39w0-ZqLowe83A4X84bW6W1zczi_z8WCFHK0p-jzM2DsYKhMrqIqWXIgEsaWyrp0ljLppCRj6OINUaGs5XTeaAHVwnKMyb9T-ulvTW5UZM4smIhYNtLZEhDgj02oGOa4wFnGiPmxN7r8N-hk-xR0afHKQFwf50UETdS5e2eUU7euUwGb0Y1fykQNfQEs8FqG1Mbi2FiAWoyW-DH_yUEy_K2S0-kQdiY89IwuRx0XhEWHvGRDPqsJN1PHW9X7sxQ--KNgKEmKV7_5d5pF6KtUfqGPHar-_39B7Bil9OEnB_Ulqoz8AyU_juA |
link.rule.ids | 230,315,783,787,799,867,888,2109,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLamcQAOMBiIsgE5cIN0buy49nHrqLqx9tRJvVnxy_NlqEFbehh_Pe85aWHAASlSEity4vf843vO589CfAxAuFaizC0oTQGKM3mlbchL6ixdpXRAx6uR5wszu9aXq3K1Jz7v1sIgYiKf4ZAv07_8uoENT5WdWMPqVhSgPyJcbU23WuvXjEpJ0HjstitjpDu5XE3OJ0zfcsPCsZiXezD6JJH-flcVOjXUpv7qkdMwM30u5tsP7NglN8NNG4bw4w_txv8twYF41uPN7LSrIC_EHq5fiqe_qRAeirNEG8im35qKOdA5T6hlc2bg3mdtky15E4nsokbOBmBzW8F9xpoedL_oSOR3r8T19MtyMsv7rRVy0Kpo8zAi_0AwKhpnihptiOhijeV4bDVClFWNjsCPVYCF1JrSZSXRgQyWnjDqtdhfN2t8IzKlRlFFgKJytS4BXByhqiXBHFsoDTAQn7Ym9987BQ2fIg_pfHKQZwf53kEDccZe2T3J6tcpgczo-8bkI4W-DjRSbwRax2DrMUOxGDXSoeiVh2z6XSa91QfiiH3sCVuwQC4wkwhaT5B4ZAo7EMdb1_u-Hd_5oiArcJBVvv13nh_E49lyfuWvLhZfj8QTLkpHJDsW--3tBt8RZGnD-1RTfwJ2aOYO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Floating+Gate+Memory+to+Train+Ideal+Accuracy+Neural+Networks&rft.jtitle=IEEE+journal+on+exploratory+solid-state+computational+devices+and+circuits&rft.au=Agarwal%2C+Sapan&rft.au=Garland%2C+Diana&rft.au=Niroula%2C+John&rft.au=Jacobs-Gedrim%2C+Robin+B.&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=2329-9231&rft.eissn=2329-9231&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1109%2FJXCDC.2019.2902409&rft.externalDocID=1501628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9231&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9231&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9231&client=summon |