Investigation of strain redistribution mechanism in α titanium by image-based crystal plasticity analysis

Mechanisms of strain localization and localized activation of slip systems in α titanium were investigated using a crystal plasticity finite element (CPFE) method. A microscopic image of polycrystalline α titanium was obtained by electron back scatter diffraction (EBSD), and the data was converted f...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. B, Condensed matter physics Vol. 92; no. 9; pp. 1 - 10
Main Authors Kawano, Yoshiki, Ohashi, Tetsuya, Mayama, Tsuyoshi, Tanaka, Masaki, Okuyama, Yelm, Sato, Michihiro
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mechanisms of strain localization and localized activation of slip systems in α titanium were investigated using a crystal plasticity finite element (CPFE) method. A microscopic image of polycrystalline α titanium was obtained by electron back scatter diffraction (EBSD), and the data was converted from the microscopic image into the geometric model for the CPFE analysis. The uniaxial tensile deformation of the model was numerically reproduced by the CPFE method employing a dislocation density based constitutive equation. The results showed that the strain distribution corresponds well with that obtained by the experiment when the ratio of critical resolved shear stress (CRSS) employed in the numerical simulation is basal:prismatic ⟨ a ⟩:1st-pyramidal ⟨ a ⟩:1st-pyramidal ⟨ c + a ⟩:2nd-pyramidal ⟨ c + a ⟩ = 1.0:1.0:1.3:2.0:2.0. Next, numerical simulations were performed by changing the ratio of CRSS among the slip systems but keeping all other conditions the same as those of the above uniaxial tensile analysis. The results showed that strain redistribution typically occurs between hard and soft regions with high and low CRSSs for the primary slip systems; this redistribution resulted in a localized higher strain and activation of slip systems. However, localized activation of slip systems was observed even in slip systems with higher CRSS; the mechanism could be explained by the strain redistribution in the tensile direction. Graphical abstract
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/e2019-100238-3