PPARγ agonists induce adipocyte differentiation by modulating the expression of Lipin-1, which acts as a PPARγ phosphatase
[Display omitted] PPARγ agonists induced obesity in animal models as a side effect. Microarray experiments reveal that PPARγ agonist upregulates the expression of lipin-1 and this upregulation is correlated with the activity of the agonists. Lipin-1 induced by PPARγ agonists decreased the levels of...
Saved in:
Published in | The international journal of biochemistry & cell biology Vol. 81; no. Pt A; pp. 57 - 66 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
PPARγ agonists induced obesity in animal models as a side effect. Microarray experiments reveal that PPARγ agonist upregulates the expression of lipin-1 and this upregulation is correlated with the activity of the agonists. Lipin-1 induced by PPARγ agonists decreased the levels of PPARγ and ERK1/2 phosphorylation through direct interaction with these proteins in 3T3-L1 cells. In PPARγ agonist-treated 3T3-L1 preadipocytes, the knockdown of lipin-1 expression by small interfering RNA inhibited the adipogenesis that was induced by PPARγ agonists. In contrast, PPARγ2 expression was increased, and lipid droplets were accumulated in lipin-1-overexpressing 3T3-L1 adipocytes. Rosiglitazone (RGZ), a strong PPARγ agonist, synergistically promoted PPARγ dephosphorylation and adipogenesis in lipin-1-overexpressing 3T3-L1 preadipocytes. Therefore, lipin-1 has dual functions as a transcriptional cofactor and phosphatidate phosphatase (PAP) in the differentiation of preadipocyte cells induced by strong PPARγ agonists. In addition, the adipogenesis of 3T3-L1 cells was markedly upregulated by diacylglycerol (DAG), which was produced by lipin-1. Therefore, lipin-1 induction by PPARγ agonists might be an important factor in understanding the biological mechanism of the agonists’ adverse effects, and this information may be valuable in the development of type-2 diabetes mellitus (T2DM) therapeutics with reduced adverse effects and greater tolerability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1357-2725 1878-5875 |
DOI: | 10.1016/j.biocel.2016.10.018 |