Multitemporal Sentinel-1 and Sentinel-2 Images for Characterization and Discrimination of Young Forest Stands Under Regeneration in Norway
There is a need for mapping of forest areas with young stands under regeneration in Norway, as a basis for conducting tending, or precommercial thinning (PCT), whenever necessary. The main objective of this article is to show the potential of multitemporal Sentinel-1 (S-1) and Sentinel-2 (S-2) data...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 5049 - 5063 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | There is a need for mapping of forest areas with young stands under regeneration in Norway, as a basis for conducting tending, or precommercial thinning (PCT), whenever necessary. The main objective of this article is to show the potential of multitemporal Sentinel-1 (S-1) and Sentinel-2 (S-2) data for characterization and detection of forest stands under regeneration. We identify the most powerful radar and optical features for discrimination of forest stands under regeneration versus other forest stands. A number of optical and radar features derived from multitemporal S-1 and S-2 data were used for the class separability and cross-correlation analysis. The analysis was performed on forest resource maps consisting of the forest development classes and age in two study sites from south-eastern Norway. Important features were used to train the classical random forest (RF) classification algorithm. A comparative study of performance of the algorithm was used in three cases: I) using only S-1 features, II) using only S-2 optical bands, and III) using combination of S-1 and S-2 features. RF classification results pointed to increased class discrimination when using S-1 and S-2 data in relation to S-1 or S-2 data only. The study shows that forest stands under regeneration in the height interval for PCT can be detected with a detection rate of 91% and F-1 score of 73.2% in case III as most accurate, while tree density and broadleaf fraction could be estimated with coefficient of determination (<inline-formula><tex-math notation="LaTeX">\text {R}^2</tex-math></inline-formula>) of about 0.70 and 0.80, respectively. |
---|---|
Bibliography: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
ISSN: | 1939-1404 2151-1535 2151-1535 |
DOI: | 10.1109/JSTARS.2021.3073101 |