Evaluation of Motor and Cognitive Performance in People with Parkinson's Disease Using Instrumented Trail-Making Test
Parkinson's disease (PD) progressively impairs motor and cognitive performance. The current tools to detect decline in motor and cognitive functioning are often impractical for busy clinics and home settings. To address the gap, we designed an instrumented trail-making task (iTMT) based on a we...
Saved in:
Published in | Gerontology (Basel) Vol. 68; no. 2; p. 234 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
01.02.2022
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Parkinson's disease (PD) progressively impairs motor and cognitive performance. The current tools to detect decline in motor and cognitive functioning are often impractical for busy clinics and home settings. To address the gap, we designed an instrumented trail-making task (iTMT) based on a wearable sensor (worn on the shin) with interactive game-based software installed on a tablet. The iTMT test includes reaching to 5 indexed circles, a combination of numbers (1-3) and letters (A&B) randomly positioned inside target circles, in a sequential order, which virtually appears on a screen kept in front of the participants, by rotating one's ankle joint while standing and holding a chair for safety. By measuring time to complete iTMT task (iTMT time), iTMT enables quantifying cognitive-motor performance.
This study's objective is to examine the feasibility of iTMT to detect early cognitive-motor decline in PDs.
Three groups of volunteers, including 14 cognitively normal (CN) older adults, 14 PDs, and 11 mild cognitive impaireds (MCI), were recruited. Participants completed MoCA, 20 m walking test, and 3 trials of iTMT.
All participants enabled to complete iTMT with <3 min, indicating high feasibility. The average iTMT time for CN-Older, PD, and MCI participants were 20.9 ± 0.9 s, 32.3 ± 2.4 s, and 40.9 ± 4.5 s, respectively. After adjusting for age and education level, pairwise comparison suggested large effect sizes for iTMT between CN-older versus PD (Cohen's d = 1.7, p = 0.024) and CN-older versus MCI (d = 1.57, p < 0.01). Significant correlations were observed when comparing iTMT time with the gait speed (r = -0.4, p = 0.011) and MoCA score (r = -0.56, p < 0.01).
This study demonstrated the feasibility and early results supporting the potential application of iTMT to determine cognitive-motor and distinguishing individuals with MCI and PD from CN-older adults. Future studies are warranted to test the ability of iTMT to track its subtle changes over time. |
---|---|
ISSN: | 1423-0003 |
DOI: | 10.1159/000515940 |