On formulae for the determinant of symmetric pentadiagonal Toeplitz matrices

We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials. Mathematics Subject Classification 15B05 * 65F40 * 33C45

Saved in:
Bibliographic Details
Published inArabian Journal of Mathematics Vol. 7; no. 2; pp. 91 - 99
Main Author Elouafi, Mohamed
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-5343
2193-5351
2193-5351
DOI10.1007/s40065-017-0194-0

Cover

Abstract We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials. Mathematics Subject Classification 15B05 * 65F40 * 33C45
AbstractList We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials.
We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials. Mathematics Subject Classification 15B05 * 65F40 * 33C45
Audience Academic
Author Elouafi, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Elouafi
  fullname: Elouafi, Mohamed
  email: med3elouafi@gmail.com
  organization: Classes Préparatoites aux Grandes Ecoles d’Ingénieurs
BookMark eNp9kV1rHSEQhqWk0Hz9gN4t5KoXe-r4sbtehtCkgQOBJr0W446nhl09UQ8k-fXxsKU0hRQZHMb3cRzfI3IQYkBCPgNdAaX91ywo7WRLoa-hREs_kEMGireSSzj4kwv-iZzm_EApBSp5z-GQrG9C42Kad5PBfdKUX9iMWDDNPphQmuia_DzPWJK3zRZDMaM3mxjM1NxF3E6-vDSz2Z9iPiEfnZkynv7ej8nPy293F9_b9c3V9cX5urWCs9ICoGWOc24Zu78XOI7OACouXScHVIMA6IZxrCEM49Q4DnRQfFSdkQqo5cfkbLl3m-LjDnPRD3GX6pOyBtVL0XUCWFWtFtXGTKh9cLEkY-sacfa2_qDztX4u-54NoAZegS9vgKop-FQ2Zpezvr798VYLi9ammHNCp7fJzyY9a6B6b4peTNHVFL03RdPK9P8w1hdTfG2TjJ_-S7KFzLVL2GD6a-B3oVcnoKDE
CitedBy_id crossref_primary_10_1016_j_laa_2020_09_014
crossref_primary_10_1080_03081087_2019_1708845
crossref_primary_10_1134_S0001434623010054
crossref_primary_10_3336_gm_56_2_05
crossref_primary_10_3390_math8071056
Cites_doi 10.1142/9700
10.1016/j.camwa.2016.01.027
10.1088/0266-5611/21/6/005
10.1016/j.laa.2011.05.025
10.1007/978-3-319-49182-0_11
10.1007/BF02575838
ContentType Journal Article
Copyright The Author(s) 2017
COPYRIGHT 2018 Springer
Arabian Journal of Mathematics is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017
– notice: COPYRIGHT 2018 Springer
– notice: Arabian Journal of Mathematics is a copyright of Springer, (2017). All Rights Reserved.
DBID C6C
AAYXX
CITATION
ISR
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s40065-017-0194-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2193-5351
EndPage 99
ExternalDocumentID A577281983
10_1007_s40065_017_0194_0
GroupedDBID -A0
0R~
2VQ
4.4
5VS
8FE
8FG
AAFWJ
AAKKN
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
ISR
ITC
J9A
KQ8
L6V
M7S
M~E
OK1
PIMPY
PROAC
PTHSS
RIG
RSV
SMT
SOJ
AAJBT
AASML
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ACAOD
ACSTC
AEFQL
AEZWR
AFDZB
AFHIU
AHWEU
AIGIU
AIXLP
AMVHM
CITATION
PHGZM
PHGZT
ABRTQ
ABUWG
ACZOJ
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c432t-11ec2f333c22bb4eddfa1e935f658e9841168dd68d4a230af310893d96a5910c3
IEDL.DBID 8FG
ISSN 2193-5343
2193-5351
IngestDate Wed Aug 13 04:51:23 EDT 2025
Sat Mar 08 18:38:10 EST 2025
Wed Mar 05 05:21:48 EST 2025
Thu Apr 24 22:58:16 EDT 2025
Tue Jul 01 03:39:50 EDT 2025
Fri Feb 21 02:40:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 15B05
65F40
33C45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-11ec2f333c22bb4eddfa1e935f658e9841168dd68d4a230af310893d96a5910c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/1975466412?pq-origsite=%requestingapplication%
PQID 1975466412
PQPubID 2034799
PageCount 9
ParticipantIDs proquest_journals_1975466412
gale_infotracacademiconefile_A577281983
gale_incontextgauss_ISR_A577281983
crossref_primary_10_1007_s40065_017_0194_0
crossref_citationtrail_10_1007_s40065_017_0194_0
springer_journals_10_1007_s40065_017_0194_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180600
2018-6-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 6
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian Journal of Mathematics
PublicationTitleAbbrev Arab. J. Math
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Grenander, Szeg ö (CR9) 1984
Elouafi (CR7) 2014; 229
Barrera, Grudsky (CR1) 2017; 259
CR4
Doman (CR3) 2015
Jia, Yang, Li (CR10) 2016; 71
Elouafi (CR5) 2011; 435
Fasino (CR8) 1988; 25
Elouafi (CR6) 2013; 219
Chu, Diele, Ragnion (CR2) 2005; 21
Mason, Handscomb (CR11) 2003
MT Chu (194_CR2) 2005; 21
JC Mason (194_CR11) 2003
D Fasino (194_CR8) 1988; 25
M Barrera (194_CR1) 2017; 259
JT Jia (194_CR10) 2016; 71
BGS Doman (194_CR3) 2015
M Elouafi (194_CR5) 2011; 435
194_CR4
M Elouafi (194_CR7) 2014; 229
M Elouafi (194_CR6) 2013; 219
U Grenander (194_CR9) 1984
References_xml – year: 2015
  ident: CR3
  publication-title: The Classical Orthogonal Polynomials
  doi: 10.1142/9700
– volume: 71
  start-page: 1036
  year: 2016
  end-page: 1044
  ident: CR10
  article-title: On a homogeneous recurrence relation for the determinants of general pentadiagonal Toeplitz matrices
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.01.027
– year: 2003
  ident: CR11
  publication-title: Chebyshev Polynomials
– volume: 21
  start-page: 1879
  year: 2005
  end-page: 1894
  ident: CR2
  article-title: On the inverse problem of constructing symmetric pentadiagonal Toeplitz matrices from three largest eigenvalues
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/6/005
– volume: 219
  start-page: 4789
  issue: 9
  year: 2013
  end-page: 4791
  ident: CR6
  article-title: A note for an explicit formula for the determinant of pentadiagonal and heptadiagonal symmetric Toeplitz matrices
  publication-title: Appl. Math. Comput.
– volume: 435
  start-page: 2986
  year: 2011
  end-page: 2998
  ident: CR5
  article-title: An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2011.05.025
– volume: 259
  start-page: 179
  year: 2017
  end-page: 212
  ident: CR1
  article-title: Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices
  publication-title: Oper. Theory Adv. Appl.
  doi: 10.1007/978-3-319-49182-0_11
– volume: 25
  start-page: 301
  year: 1988
  end-page: 310
  ident: CR8
  article-title: Spectral and structural properties of some pentadiagonal symmetric matrices
  publication-title: Calcolo
  doi: 10.1007/BF02575838
– ident: CR4
– volume: 229
  start-page: 27
  issue: 25
  year: 2014
  end-page: 33
  ident: CR7
  article-title: On a relationship between Chebyshev polynomials and Toeplitz determinants
  publication-title: Appl. Math. Comput.
– year: 1984
  ident: CR9
  publication-title: Toeplitz Forms and their Applications
– volume-title: Toeplitz Forms and their Applications
  year: 1984
  ident: 194_CR9
– volume: 259
  start-page: 179
  year: 2017
  ident: 194_CR1
  publication-title: Oper. Theory Adv. Appl.
  doi: 10.1007/978-3-319-49182-0_11
– volume-title: The Classical Orthogonal Polynomials
  year: 2015
  ident: 194_CR3
  doi: 10.1142/9700
– volume: 21
  start-page: 1879
  year: 2005
  ident: 194_CR2
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/6/005
– volume-title: Chebyshev Polynomials
  year: 2003
  ident: 194_CR11
– volume: 25
  start-page: 301
  year: 1988
  ident: 194_CR8
  publication-title: Calcolo
  doi: 10.1007/BF02575838
– volume: 71
  start-page: 1036
  year: 2016
  ident: 194_CR10
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.01.027
– volume: 435
  start-page: 2986
  year: 2011
  ident: 194_CR5
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2011.05.025
– ident: 194_CR4
– volume: 219
  start-page: 4789
  issue: 9
  year: 2013
  ident: 194_CR6
  publication-title: Appl. Math. Comput.
– volume: 229
  start-page: 27
  issue: 25
  year: 2014
  ident: 194_CR7
  publication-title: Appl. Math. Comput.
SSID ssj0001053731
ssib044730092
Score 2.0880227
Snippet We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms Chebyshev approximation
Determinants (Mathematics)
Differential equations
Mathematical analysis
Mathematical research
Mathematics
Mathematics and Statistics
Matrices (Mathematics)
Matrix methods
Polynomials
Signal processing
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz2IT6yuEkQQlGDTJN32uCwuKj7AB3gLaZJ6cbuL3T3or3em2666PsBDoZDpa_KYbzqTbwg5SLlLOJh2ZpU1THojGZjhFICcSELhpEmyKkH2Oj57kBeP6rEmi8a9MDPx-5NSopFkuJYCGJEMvPMFxUVcxWXjbjN0pETe9TpAWP1eQZ6SqhohTEnBlJCiiWn-dNcvVml2bf4WJK1sT2-FLNegkXYmvbxK5nyxRpaupoyr5Tq5vCko4s_xs_F4QqGNuo9cFzrIafna72MBLUuHmDEOI-MJcTi9H3iAoqM32q_4-n25QR56p_fdM1ZXSmBWimjEOPc2yoUQNoqyTHrncsN9KlQOAMOnieQ8TpyDQxrwOUwOoA6AiktjowAvWLFJ5otB4bcIVWmc2XbkM1AZuG5pYjx4VCAb5ko5ywMSNprStqYRx2oWz3pKgFwpV4NyNSpXhwE5ml4ynHBo_CW8j-rXyE1RYPLLkxmXpT6_u9UdBa4AIJhEBOSwFsoH8HBr6r0E8AlIZ_VFstV0o65nZ6l52lZIq8-jgBw3Xfup-bd32_6X9A5ZBHSVTPLKWmR-9DL2u4BgRtleNXbfAavO4a0
  priority: 102
  providerName: Springer Nature
Title On formulae for the determinant of symmetric pentadiagonal Toeplitz matrices
URI https://link.springer.com/article/10.1007/s40065-017-0194-0
https://www.proquest.com/docview/1975466412
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXNpDBX2oWyiyqkqVWlmNYzs4p2p32QWqQisKEjfLsR0ubLKQ3QMc-ts7k3WWRwWHOFHivMZjz2d7_A0hn3LuNQfTzpxylslgJQMznAOQEzoRXlpdtA6yR9n-qfxxps7igFsT3Sq7NrFtqH3tcIz8G893FFKh8_T79JJh1CicXY0hNJ6RNQ6WBvVcj_c6fZISydjjrGE75oLkJW2IQqingimheDfRiavpJNpjhs024B7Jknum6mGD_d_MaWuQxuvkZUSStL8o-g2yEqpX5MXhkoa1eU1-_qoogtL5hQ14QOEa9bcOMLQuaXM9mWBULUen6EYO6nKO4Jye1AHw6eyGTloS_9C8Iafj0clwn8XwCcxJkc4Y58GlpRDCpWlRyOB9aXnIhSoBdYRcS84z7T1s0kJHxJaA9AC9-DyzCkCEE2_JalVX4R2hKs8Kt5OGQgkJ_blc2wDdLMiblEp5x3sk6SRlXOQWxxAXF2bJitwK14BwDQrXJD3yZXnLdEGs8VTmjyh-g4QVFXrEnNt505iDP8emr6B_ALBGix75HDOVNbzc2bjAAH4BOa7u5dzqitHEKtuYWwXrka9d0d65_Ni3vX_6YZvkOWAsvfAu2yKrs6t5-AA4ZlZst8q6Tdb6g93BGPaD0dHvYzg7TCWm2RDSw7-jfy2M7zo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QF6QOVL3VLAQiAkkEUc29vkgFCBVrt0u6CylXozju300k22ZFeo_Ch-Y2eyyZaC6K2HSJHifI0nfm_i8RuAF6nwiUBo5047y1WwiiMMp0jkZBJJr2yS1Qmyo17_SH0-1scr8LtdC0Nple2YWA_UvnT0j_ytSLc1SaGL-P30jFPVKJpdbUtoLNxiP5z_xJCtejf4hP37Mo73dscf-7ypKsCdkvGMCxFcnEspXRxnmQre51aEVOocwTikiRKil3iPm7LIz22OBAhB3ac9qxFbncTr3oJVRStaO7D6YXf09bD1YKVI_r2Zp6z_8pBcSl0UEUcGybXUop1apfV7ihgAJ6BApqV4dAUc_4aIf-ZqawjcW4e7DXdlOwtnuwcrobgPawdL4dfqAQy_FIxo8PzUBtpheIz5y5QbVuasOp9MqI6XY1NKXEcHPaFwgI3LgIx49otN6rIBoXoIRzdi2kfQKcoibADTaS9z23HItFQYQaaJDRjYYdso19o70YWotZRxjZo5FdU4NUsd5tq4Bo1ryLgm6sLr5SnThZTHdY2fk_kNSWQUlINzYudVZQbfDs2OxogEiVQiu_CqaZSXeHNnmyUN-AqkqnWl5VbbjaYZJCpz6dJdeNN27R-H__dsm9df7Bnc7o8PhmY4GO0_hjvI8JJFbtsWdGY_5uEJsqhZ9rRxXQbfb_pruQCECycQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4VOVLLG3BQiAkkNU4tnfjA0IVZenSUhC0Um_GsZ1eusm22RUqP41fx0w22VIQvfUQKVKcr_HE7008fgPw3IiQCYR27rV3XEWnOMKwQSIns0QG5bK8SZDd7-8cqo9H-mgJfnVrYSitshsTm4E6VJ7-kW8KM9AkhS7SzaJNi_iyPXw7OeVUQYpmWrtyGnMX2Y3nPzB8q9-MtrGvX6Tp8P3Bux3eVhjgXsl0yoWIPi2klD5N81zFEAonopG6QGCOJlNC9LMQcFMOuborkAwhwAfTdxpx1ku87g24OZADQ4FfNvzQ-bJSJATfzlg2_3tIOKUpj4hjhORaatFNstJKPkVcgBNkIOdSPLkEk3-DxT-ztg0YDldhpWWxbGvudndhKZb34M6nhQRsfR_2PpeMCPHsxEXaYXiMhYvkG1YVrD4fj6mil2cTSmFHVz2mwIAdVBG58fQnGzcFBGL9AA6vxbAPYbmsyvgImDb93A_SmGupMJY0mYsY4mHbpNA6eNGDpLOU9a2uOZXXOLELRebGuBaNa8m4NunBq8Upk7mox1WNn5H5LYlllOR2x25W13b07avd0hibIKXKZA9eto2KCm_uXbu4AV-B9LUutVzvutG2w0VtL5y7B6-7rv3j8P-e7fHVF3sKt_AbsXuj_d01uI1UL5snua3D8vRsFjeQTk3zJ43fMvh-3R_Kb2o0KeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+formulae+for+the+determinant+of+symmetric+pentadiagonal+Toeplitz+matrices&rft.jtitle=Arabian+journal+of+mathematics&rft.au=Elouafi%2C+Mohamed&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2193-5351&rft.eissn=2193-5351&rft.volume=7&rft.issue=2&rft.spage=91&rft.epage=99&rft_id=info:doi/10.1007%2Fs40065-017-0194-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-5343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-5343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-5343&client=summon