On formulae for the determinant of symmetric pentadiagonal Toeplitz matrices

We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials. Mathematics Subject Classification 15B05 * 65F40 * 33C45

Saved in:
Bibliographic Details
Published inArabian Journal of Mathematics Vol. 7; no. 2; pp. 91 - 99
Main Author Elouafi, Mohamed
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-5343
2193-5351
2193-5351
DOI10.1007/s40065-017-0194-0

Cover

Loading…
More Information
Summary:We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials. Mathematics Subject Classification 15B05 * 65F40 * 33C45
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2193-5343
2193-5351
2193-5351
DOI:10.1007/s40065-017-0194-0