On formulae for the determinant of symmetric pentadiagonal Toeplitz matrices
We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials. Mathematics Subject Classification 15B05 * 65F40 * 33C45
Saved in:
Published in | Arabian Journal of Mathematics Vol. 7; no. 2; pp. 91 - 99 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-5343 2193-5351 2193-5351 |
DOI | 10.1007/s40065-017-0194-0 |
Cover
Loading…
Summary: | We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials. Mathematics Subject Classification 15B05 * 65F40 * 33C45 |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2193-5343 2193-5351 2193-5351 |
DOI: | 10.1007/s40065-017-0194-0 |