A Survey of Surface‐Based Illustrative Rendering for Visualization

In this paper, we survey illustrative rendering techniques for 3D surface models. We first discuss the field of illustrative visualization in general and provide a new definition for this sub‐area of visualization. For the remainder of the survey, we then focus on surface‐based models. We start by b...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 37; no. 6; pp. 205 - 234
Main Authors Lawonn, Kai, Viola, Ivan, Preim, Bernhard, Isenberg, Tobias
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.09.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we survey illustrative rendering techniques for 3D surface models. We first discuss the field of illustrative visualization in general and provide a new definition for this sub‐area of visualization. For the remainder of the survey, we then focus on surface‐based models. We start by briefly summarizing the differential geometry fundamental to many approaches and discuss additional general requirements for the underlying models and the methods' implementations. We then provide an overview of low‐level illustrative rendering techniques including sparse lines, stippling and hatching, and illustrative shading, connecting each of them to practical examples of visualization applications. We also mention evaluation approaches and list various application fields, before we close with a discussion of the state of the art and future work. In this paper, we survey illustrative rendering techniques for 3D surface models. We first discuss the field of illustrative visualization in general and provide a new definition for this sub‐area of visualization. For the remainder of the survey, we then focus on surface‐based models. We start by briefly summarizing the differential geometry fundamental to many approaches and discuss additional general requirements for the underlying models and the methods' implementations. We then provide an overview of low‐level illustrative rendering techniques including sparse lines, stippling and hatching, and illustrative shading, connecting each of them to practical examples of visualization applications. We also mention evaluation approaches and list various application fields, before we close with a discussion of the state of the art and future work.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13322