Comparative Study of Flux of FITC-labeled Dextran 4000 on Normal (iso)- and Hyper-osmolarity in Basal Side in Caco-2 Cell Monolayers

We have shown previously that the flux of fluorescein isothiocyanate dextran 4000 (FD-4) is transported across the Caco-2 cell monolayers in a polarized fashion favoring the basal to apical direction under normal conditions (i.e., isotonic solution in basal side). Furthermore, FD-4 transport may occ...

Full description

Saved in:
Bibliographic Details
Published inDRUG METABOLISM AND PHARMACOKINETICS Vol. 18; no. 6; pp. 404 - 408
Main Authors Ohkubo, Rie, Tomita, Mikio, Hotta, Yoshiyuki, Nagira, Mayuko, Hayashi, Masahiro
Format Journal Article
LanguageEnglish
Japanese
Published England Elsevier Ltd 2003
Japanese Society for the Study of Xenobiotics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have shown previously that the flux of fluorescein isothiocyanate dextran 4000 (FD-4) is transported across the Caco-2 cell monolayers in a polarized fashion favoring the basal to apical direction under normal conditions (i.e., isotonic solution in basal side). Furthermore, FD-4 transport may occur via a process that included a certain degree of substrate specificity for polysaccharide and transcytosis. In the present study, we compared the flux of FD-4 in the basal to apical direction (efflux) and the apical to basal direction (influx) in stress conditions (i.e., hyperosmolarity in basal side) to those in normal conditions (i.e., iso-osmolarity in basal side). The efflux of FD-4 was increased by hyperosmolarity in basal side, but the influx was decreased when compared with normal conditions. Neither dextran 10,000 nor colchicine inhibited the efflux of FD-4 in hyperosmolarity conditions. The inhibition of efflux of FD-4 was observed not by S-nitroso-N-acetylpenicillamine but by sodium nitroprusside and sodium ferrocyanide. These results collectively suggest that hyperosmolarity in basal side accelerates the efflux of FD-4 across the transcellular route but not across the paracellular route in Caco-2 cell monolayers. And it is indicated that cyanide rather than nitric oxide is involved in dysfunction of the FD-4 efflux system irrespective of conditions such as normal osmolarity or hyperosmolarity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1347-4367
1880-0920
DOI:10.2133/dmpk.18.404