Wastewater transformations and fertilizer value when co-digesting differing ratios of swine manure and used cooking grease in low-cost digesters
A nine-month co-digestion investigation was conducted in Costa Rica to optimize animal wastewater treatment, renewable energy production, and fertilizer creation using 12 Taiwanese-model, plug-flow digesters (250 L each) constructed of tubular polyethylene and PVC piping, operating without mechanica...
Saved in:
Published in | Biomass & bioenergy Vol. 34; no. 12; pp. 1711 - 1720 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A nine-month co-digestion investigation was conducted in Costa Rica to optimize animal wastewater treatment, renewable energy production, and fertilizer creation using 12 Taiwanese-model, plug-flow digesters (250 L each) constructed of tubular polyethylene and PVC piping, operating without mechanical or heating components. The experiment tested three replications of four treatment groups: the control (T0), which contained only swine manure, and T2.5, T5, and T10, which contained 2.5%, 5%, and 10% used cooking grease (by volume) combined with swine manure.
T2.5 had the greatest methane production (45 L d
−1), a 124% increase from the control. No adverse effects were observed from co-digesting 2.5% grease in terms of organic matter removal, pathogen reduction, grease removal, and pH. Chemical oxygen demand (COD) was reduced 94.7% to 1.96 g L
−1, fecal coliforms and
Escherichia coli were reduced 99.2 and 97.1%, respectively, and grease removal was 99.9%. The average effluent pH (7.05) and alkalinity in T2.5 was within the optimal range for methanogens and increased significantly during the nine-month experiment, likely due to adaptation of the methanogenic organisms to the influent grease concentrations. Total nitrogen concentration decreased 34.0%, and NH
4-N increased 97.1% during digestion in T2.5, with no significant differences between T2.5 and T0. There was less phosphorus reduction with co-digestion, with 181 mg g
−1 of total phosphorus (TP) in T2.5 and only 90.6 mg g
−1 of TP in T0, resulting in lower N:P ratios in the grease treatment groups due to the greater concentration of phosphorus in the effluent. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.biombioe.2010.07.005 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0961-9534 1873-2909 |
DOI: | 10.1016/j.biombioe.2010.07.005 |