A combo-strategy to improve brain delivery of antiepileptic drugs: Focus on BCRP and intranasal administration

[Display omitted] The breast cancer resistance protein (BCRP) is an efflux transporter expressed at the apical surface of human brain endothelial cells of the blood-brain barrier (BBB). It was proposed as one of the transporters responsible for the development of drug resistance to several central n...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 593; p. 120161
Main Authors Gonçalves, Joana, Silva, Soraia, Gouveia, Filipa, Bicker, Joana, Falcão, Amílcar, Alves, Gilberto, Fortuna, Ana
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 25.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] The breast cancer resistance protein (BCRP) is an efflux transporter expressed at the apical surface of human brain endothelial cells of the blood-brain barrier (BBB). It was proposed as one of the transporters responsible for the development of drug resistance to several central nervous system (CNS) drugs, including antiepileptic drugs (AEDs). In this context, the present work aimed to characterize the interaction between new-generation AEDs, lacosamide, levetiracetam and zonisamide, and BCRP, in order to investigate whether intranasal administration can successfully avoid the impact of BCRP on brain drug distribution, preventing the development of refractory epilepsy. Firstly, BCRP substrates and/or inhibitors were identified resorting to intracellular accumulation and bidirectional transport assays on Madin-Darby canine kidney (MDCK) cells and the transfected cell line with human ABCG2 (MDCK-BCRP). Furthermore, in vivo pharmacokinetic studies were carried out for BCRP substrates with and without elacridar, a well-known P-gp and BCRP modulator, to assess the impact of efflux inhibition on brain drug distribution. The extent of drug equilibration between plasma and brain was compared after intravenous (IV) and intranasal administration to mice. Among the three tested AEDs, zonisamide was the only AED identified as BCRP substrate in vitro, as demonstrated by the net flux ratio of 2.73, which decreased 53.85 % in the presence of a BCRP inhibitor, Ko143. Lacosamide revealed to inhibit BCRP in all tested concentrations (2.5–75 µM), exhibiting a significant increase (p < 0.001) of the intracellular accumulation of a BCRP substrate (Hoechst 33342) in MDCK-BCRP cells. Levetiracetam did not behave as a BCRP substrate nor inhibitor. After IV administration, the plasma concentrations of zonisamide were unaffected by elacridar, but its extent of brain exposure increased three-fold (as assessed by AUCt, 674.12 vs 284.47 µg.min/mL). These results corroborate the previous in vitro findings, suggesting that BCRP is involved in the transport of zonisamide through the BBB. In opposition, no significant changes were found in plasma or brain concentrations after the administration of zonisamide by intranasal route, indicating that the influence of BCRP is less relevant than for IV route. In addition, direct nose-to-brain delivery of zonisamide, given by the direct transport percentage, was approximately 49 %. Altogether, these assays demonstrated that the impact of BCRP on the delivery of zonisamide to the brain is lower after intranasal administration, probably due to direct nose-to-brain transport. Therefore, the intranasal administration of AEDs may be a relevant strategy to avoid the impact of efflux transporters at the BBB and the development of drug resistance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2020.120161