Survival and recovery of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on lettuce and parsley as affected by method of inoculation, time between inoculation and analysis, and treatment with chlorinated water

The effects of method for applying inoculum and of drying time after inoculation on survival and recovery of foodborne pathogens on iceberg lettuce and parsley were studied. Five-strain mixtures of Escherichia coli O157:H7, Salmonella, or Listeria monocytogenes were applied to lettuce and parsley by...

Full description

Saved in:
Bibliographic Details
Published inJournal of food protection Vol. 67; no. 6; pp. 1092 - 1103
Main Authors Lang, M.M, Harris, L.J, Beuchat, L.R
Format Journal Article
LanguageEnglish
Published Des Moines, IA International Association of Milk, Food and Environmental Sanitarians 01.06.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of method for applying inoculum and of drying time after inoculation on survival and recovery of foodborne pathogens on iceberg lettuce and parsley were studied. Five-strain mixtures of Escherichia coli O157:H7, Salmonella, or Listeria monocytogenes were applied to lettuce and parsley by dip, spot, or spray inoculation methods. Inocula were dried for 2 h at 22°C or for 2 h at 22°C and then 22 h at 4°C before being treated with water (control) or chlorine (200 microgram/ml). Significantly higher populations (CFU per lettuce or parsley sample) of E. coli O157:H7 and Salmonella (α = 0.05) were recovered from dip-inoculated produce than from spot- or spray-inoculated produce. This difference was attributed to larger numbers of cells adhering to lettuce and parsley subjected to dip inoculation. Populations of E. coli O157:H7 and Salmonella recovered from lettuce inoculated by spot and spray methods were not significantly different, but populations recovered from spot-inoculated parsley were significantly higher than those recovered from spray-inoculated parsley, even though the number of cells applied was the same. Significantly different numbers of L. monocytogenes were recovered from inoculated lettuce (dip > spray > spot); populations recovered from dip-inoculated parsley were significantly higher than those recovered from spot- or spray-inoculated parsley, which were not significantly different from each other. Populations of pathogens recovered from lettuce and parsley after drying inoculum for 2 h at 22°C were significantly higher than or equal to populations recovered after drying for 2 h at 22°C and then for 22 h at 4°C. Significant differences (water > chlorine) were observed in populations of all pathogens recovered from treated lettuce and parsley, regardless of inoculation method and drying time. It is recommended that spot inoculation with a drying time of 2 h at 22°C followed by 22 h at 4°C be used to determine the efficacy of chlorine and other sanitizers in killing foodborne pathogens on lettuce and parsley.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0362-028X
1944-9097
DOI:10.4315/0362-028X-67.6.1092