Non-Invasive Estimation of Gleason Score by Semantic Segmentation and Regression Tasks Using a Three-Dimensional Convolutional Neural Network

The Gleason score (GS) is essential in categorizing prostate cancer risk using biopsy. The aim of this study was to propose a two-class GS classification (< and ≥GS 7) methodology using a three-dimensional convolutional neural network with semantic segmentation to predict GS non-invasively using...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 14; p. 8028
Main Authors Yoshimura, Takaaki, Manabe, Keisuke, Sugimori, Hiroyuki
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Gleason score (GS) is essential in categorizing prostate cancer risk using biopsy. The aim of this study was to propose a two-class GS classification (< and ≥GS 7) methodology using a three-dimensional convolutional neural network with semantic segmentation to predict GS non-invasively using multiparametric magnetic resonance images (MRIs). Four training datasets of T2-weighted images and apparent diffusion coefficient maps with and without semantic segmentation were used as test images. All images and lesion information were selected from a training cohort of the Society of Photographic Instrumentation Engineers, the American Association of Physicists in Medicine, and the National Cancer Institute (SPIE–AAPM–NCI) PROSTATEx Challenge dataset. Precision, recall, overall accuracy and area under the receiver operating characteristics curve (AUROC) were calculated from this dataset, which comprises publicly available prostate MRIs. Our data revealed that the GS ≥ 7 precision (0.73 ± 0.13) and GS < 7 recall (0.82 ± 0.06) were significantly higher using semantic segmentation (p < 0.05). Moreover, the AUROC in segmentation volume was higher than that in normal volume (ADCmap: 0.70 ± 0.05 and 0.69 ± 0.08, and T2WI: 0.71 ± 0.07 and 0.63 ± 0.08, respectively). However, there were no significant differences in overall accuracy between the segmentation and normal volume. This study generated a diagnostic method for non-invasive GS estimation from MRIs.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13148028