A review on the polymer properties of Hydrophilic, partially Degradable and Bioactive acrylic Cements (HDBC)

Acrylic bone cements were developed around 50 years ago for the fixation of hip prostheses during arthroplasty. Over the intervening years, a series of drawbacks have been disclosed that have fostered intensive research on the development of novel or alternative formulations to the standard acrylic...

Full description

Saved in:
Bibliographic Details
Published inProgress in polymer science Vol. 33; no. 2; pp. 180 - 190
Main Authors Boesel, Luciano F., Reis, Rui L.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2008
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Acrylic bone cements were developed around 50 years ago for the fixation of hip prostheses during arthroplasty. Over the intervening years, a series of drawbacks have been disclosed that have fostered intensive research on the development of novel or alternative formulations to the standard acrylic cements. Here, we will review the development and characterization of a novel class of cements, the Hydrophilic, partially Degradable and Bioactive Cements (HDBCs), an example of multifunctional cements. They were developed to have improved biocompatibility and initial fixation to the prosthesis and to induce the growth of bone on the surface of the cement and within pores generated by the degradation of the solid component. HDBCs have higher water uptake than typical acrylic cements, leading to press-fitting inside constrained cavities. They are tougher, albeit less stiff and strong than hydrophobic cements, and their mechanical properties may be easily adjusted by small changes in composition. Last, the simultaneous bioactive and degradable character of HDBCs have been shown to allow in vitro growth of calcium phosphates into pores within the bulk of the cement.
ISSN:0079-6700
1873-1619
DOI:10.1016/j.progpolymsci.2007.09.001