Preparation and characterization of nano-hydroxyapatite/polyamide 66 composite GBR membrane with asymmetric porous structure
In this study, a nano-hydroxyapatite/polyamide 66 (nHA/PA66) composite with good biocompatibility and high bioactivity is employed to develop novel asymmetric structure porous membranes for guided bone regeneration (GBR). FT-IR and XRD analyses suggest that chemical bonds are formed between nHA and...
Saved in:
Published in | Journal of materials science. Materials in medicine Vol. 20; no. 5; pp. 1031 - 1038 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.05.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, a nano-hydroxyapatite/polyamide 66 (nHA/PA66) composite with good biocompatibility and high bioactivity is employed to develop novel asymmetric structure porous membranes for guided bone regeneration (GBR). FT-IR and XRD analyses suggest that chemical bonds are formed between nHA and PA66 both in composite powders and membranes. The fabricated membranes show gradient porous structure. SEM analysis reveal that pores less than 10 μm and pores with a size ranging from 30 μm to 200 μm distribute in the micropore layer and the spongy structure layer, respectively. The surface energy determination also reveals that the fabricated membranes have asymmetric surface properties on the two sides of the membrane. The incorporation of nHA in PA66 matrix improves the properties of the membrane. The elongation at break and the tensile strength of nHA/PA66-40 suggest that the composite membrane has good strength and toughness. The rough porous structure surface with high surface energy of nHA/PA66 composite membrane may be beneficial to promote cells immobility and differentiation into a mature phenotype producing mineralized matrix. The biocompatibility, bioactivity, osteoconductivity, asymmetric porous structure, mechanical properties and hydrophilicity of the composite membrane can meet the requirement of GBR technique. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0957-4530 1573-4838 |
DOI: | 10.1007/s10856-008-3664-2 |