Short-Circuit Protection Circuits for Silicon-Carbide Power Transistors
An experimental analysis of the behavior under short-circuit conditions of three different silicon-carbide (SiC) 1200-V power devices is presented. It is found that all devices take up a substantial voltage, which is favorable for detection of short circuits. A transient thermal device simulation wa...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 63; no. 4; pp. 1995 - 2004 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An experimental analysis of the behavior under short-circuit conditions of three different silicon-carbide (SiC) 1200-V power devices is presented. It is found that all devices take up a substantial voltage, which is favorable for detection of short circuits. A transient thermal device simulation was performed to determine the temperature stress on the die during a short-circuit event, for the SiC MOSFET. It was found that, for reliability reasons, the short-circuit time should be limited to values well below Si IGBT tolerances. Guidelines toward a rugged design for short-circuit protection (SCP) are presented with an emphasis on improving the reliability and availability of the overall system. A SiC device driver with an integrated SCP is presented for each device-type, respectively, where a short-circuit detection is added to a conventional driver design in a simple way. The SCP driver was experimentally evaluated with a detection time of 180 ns. For all devices, short-circuit times well below 1 μs were achieved. |
---|---|
ISSN: | 0278-0046 1557-9948 1557-9948 |
DOI: | 10.1109/TIE.2015.2506628 |