Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters

Abstract This paper considers implications of different forms of the ensemble transformation in the ensemble square root filters (ESRFs) for the performance of ESRF-based data assimilation systems. It highlights the importance of using mean-preserving solutions for the ensemble transform matrix (ETM...

Full description

Saved in:
Bibliographic Details
Published inMonthly weather review Vol. 136; no. 3; pp. 1042 - 1053
Main Authors SAKOV, Pavel, OKE, Peter R
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 01.03.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract This paper considers implications of different forms of the ensemble transformation in the ensemble square root filters (ESRFs) for the performance of ESRF-based data assimilation systems. It highlights the importance of using mean-preserving solutions for the ensemble transform matrix (ETM). The paper shows that an arbitrary mean-preserving ETM can be represented as a product of the symmetric solution and an orthonormal mean-preserving matrix. The paper also introduces a new flavor of ESRF, referred to as ESRF with mean-preserving random rotations. To investigate the performance of different solutions for the ETM in ESRFs, experiments with two small models are conducted. In these experiments, the performances of two mean-preserving solutions, two non-mean-preserving solutions, and a traditional ensemble Kalman filter with perturbed observations are compared. The experiments show a significantly better performance of the mean-preserving solutions for the ETM in ESRFs compared to non-mean-preserving solutions. They also show that applying the mean-preserving random rotations prevents the buildup of ensemble outliers in ESRF-based data assimilation systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0027-0644
1520-0493
DOI:10.1175/2007mwr2021.1