Differences in Fluid, Electrolyte, and Energy Balance in C57BL/6J Mice (Mus musculus) in Metabolic Caging at Thermoneutral or Standard Room Temperatures

The Guide for the Care and Use of Laboratory Animals recommends mice be pair or group housed and provided with nesting materials. These provisions support social interactions and are also critical for thermoregulatory behaviors such as huddling and burrowing. However, studies of fluid and electrolyt...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Association for Laboratory Animal Science Vol. 63; no. 2; pp. 190 - 200
Main Authors Lawton, Samuel BR, Grobe, Connie C, Reho, John J, Raff, Hershel, Thulin, Joseph D, Jensen, Eric S, Burnett, Colin ML, Segar, Jeffrey L, Grobe, Justin L
Format Journal Article
LanguageEnglish
Published United States American Association for Laboratory Animal Science 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Guide for the Care and Use of Laboratory Animals recommends mice be pair or group housed and provided with nesting materials. These provisions support social interactions and are also critical for thermoregulatory behaviors such as huddling and burrowing. However, studies of fluid and electrolyte balance and digestive function may involve use of metabolic caging (MC) systems in which mice are housed individually on wire-mesh floors that permit quantitative collection of urine and feces. MC housing prevents mice from performing their typical huddling and burrowing behaviors. Housing in MC can cause weight loss and behavioral changes in rodents. Here, we tested the hypothesis that MC housing of mice at standard room temperature (SRT, 22 to 23 °C) exposes them to cold stress, which causes metabolic changes in the mice as compared with standard housing. We hypothesized that performing MC studies at a thermoneutral temperature (TNT, 30 °C) would minimize these changes. Fluid, electrolyte, and energy balance and body composition were assessed in male and female C57BL/6J mice housed at SRT or TNT in MC, static microisolation cages, or a multiplexed metabolic phenotyping system designed to mimic static microisolation cages (Promethion, Sable Systems International). In brief, as compared with MC housing at SRT, MC housing at TNT was associated with lower food intake and energy expenditure, absence of weight loss, and lower urine and fecal corticosterone levels. These results indicate that housing in MC at SRT causes cold stress that can be mitigated if MC studies are performed at TNT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1559-6109
2769-6677
2769-6677
DOI:10.30802/AALAS-JAALAS-23-000091