Magnetic Bearing Configurations: Theoretical and Experimental Studies

A radial magnetic bearing, consisting of two permanent magnets, is an attractive choice because of its zero wear, negligible friction, and low cost, but it suffers from low load capacity, low radial stiffness, lack of damping, and high axial instability. To enhance the radial load and radial stiffne...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 44; no. 2; pp. 292 - 300
Main Authors Samanta, P., Hirani, H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A radial magnetic bearing, consisting of two permanent magnets, is an attractive choice because of its zero wear, negligible friction, and low cost, but it suffers from low load capacity, low radial stiffness, lack of damping, and high axial instability. To enhance the radial load and radial stiffness, and reduce the axial thrust, we have made a theoretical and experimental study of various radial configurations, including hydrodynamic lubrication to improve dynamic performance of the magnetic bearing. We developed an experimental setup to investigate the performance of bearing configurations under different operating conditions. The motion of a rotating shaft is mapped by two displacement sensors with a data acquisition system and personal computer. The first critical speed of each configuration is determined experimentally and verified through frequency analysis. We present a polar plot of displacement data.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2007.912854