Frequency Response Enhancement of Optical Injection-Locked Lasers

The modulation response of injection-locked lasers has been carefully analyzed, theoretically and experimentally, with a focus on the strong optical injection regime. We derive closed-form solutions to the relaxation oscillation (resonance) frequency and damping term, as well as the low-frequency da...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of quantum electronics Vol. 44; no. 1; pp. 90 - 99
Main Authors Lau, E.K., Hyuk-Kee Sung, Wu, M.C.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The modulation response of injection-locked lasers has been carefully analyzed, theoretically and experimentally, with a focus on the strong optical injection regime. We derive closed-form solutions to the relaxation oscillation (resonance) frequency and damping term, as well as the low-frequency damping term, and discuss design rules for maximizing resonance frequency and broadband performance. A phasor model is described in order to better explain the enhancement of the resonance frequency. Experimental curves match closely to theory. Record resonance frequency of 72 GHz and broadband results are shown.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2007.910450