Multi-temporal Nonlinear Regression Method for Landsat Image Simulation

Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering Vol. 23; no. 2; pp. 777 - 787
Main Authors Kim, Hye Jin, Seo, Dae Kyo, Eo, Yang Dam, Jeon, Min Cheol, Park, Wan Yong
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Civil Engineers 01.02.2019
Springer Nature B.V
대한토목학회
Subjects
Online AccessGet full text
ISSN1226-7988
1976-3808
DOI10.1007/s12205-018-1157-5

Cover

Loading…
Abstract Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of correlation with the observed data distribution than the commonly used multiple linear regression equation. In this study, Multivariate Adaptive Regression Splines (MARS) and Gaussian Process Regression (GPR) were considered as methods of multiple nonlinear regression. In addition to weather, environmental parameters such as temperature and humidity were added to analyze the input parameters in the regression process. Here, the GPR method of nonlinear regression results show significant improvement in Landsat image simulation. Furthermore, regardless of the season, simulation results using multiple parameter combinations showed the highest correlation with the reference images when temperature (ground), humidity, precipitation, visibility distance, Normalized Difference Vegetation Index (NDVI), and three types of radiation were applied. It was confirmed that introduction of Moderate Resolution Imaging Spectroradiometer (MODIS) products had little positive effects on the results. Thus, the GPR method defined here provides the best simulation results by employing multiple parameters in the calculation.
AbstractList Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of correlation with the observed data distribution than the commonly used multiple linear regression equation. In this study, Multivariate Adaptive Regression Splines (MARS) and Gaussian Process Regression (GPR) were considered as methods of multiple nonlinear regression. In addition to weather, environmental parameters such as temperature and humidity were added to analyze the input parameters in the regression process. Here, the GPR method of nonlinear regression results show significant improvement in Landsat image simulation. Furthermore, regardless of the season, simulation results using multiple parameter combinations showed the highest correlation with the reference images when temperature (ground), humidity, precipitation, visibility distance, Normalized Difference Vegetation Index (NDVI), and three types of radiation were applied. It was confirmed that introduction of Moderate Resolution Imaging Spectroradiometer (MODIS) products had little positive effects on the results. Thus, the GPR method defined here provides the best simulation results by employing multiple parameters in the calculation. KCI Citation Count: 9
Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of correlation with the observed data distribution than the commonly used multiple linear regression equation. In this study, Multivariate Adaptive Regression Splines (MARS) and Gaussian Process Regression (GPR) were considered as methods of multiple nonlinear regression. In addition to weather, environmental parameters such as temperature and humidity were added to analyze the input parameters in the regression process. Here, the GPR method of nonlinear regression results show significant improvement in Landsat image simulation. Furthermore, regardless of the season, simulation results using multiple parameter combinations showed the highest correlation with the reference images when temperature (ground), humidity, precipitation, visibility distance, Normalized Difference Vegetation Index (NDVI), and three types of radiation were applied. It was confirmed that introduction of Moderate Resolution Imaging Spectroradiometer (MODIS) products had little positive effects on the results. Thus, the GPR method defined here provides the best simulation results by employing multiple parameters in the calculation.
Author Kim, Hye Jin
Park, Wan Yong
Seo, Dae Kyo
Jeon, Min Cheol
Eo, Yang Dam
Author_xml – sequence: 1
  givenname: Hye Jin
  surname: Kim
  fullname: Kim, Hye Jin
  organization: Dept. of Advanced Technology Fusion, Konkuk University
– sequence: 2
  givenname: Dae Kyo
  surname: Seo
  fullname: Seo, Dae Kyo
  organization: Dept. of Advanced Technology Fusion, Konkuk University
– sequence: 3
  givenname: Yang Dam
  surname: Eo
  fullname: Eo, Yang Dam
  organization: Dept. of Advanced Technology Fusion, Konkuk University
– sequence: 4
  givenname: Min Cheol
  surname: Jeon
  fullname: Jeon, Min Cheol
  email: mcblue@konkuk.ac.kr
  organization: Dept. of Advanced Technology Fusion, Konkuk University, Advanced Technology Research Institute, LoDiCS
– sequence: 5
  givenname: Wan Yong
  surname: Park
  fullname: Park, Wan Yong
  organization: Agency for Defense Development
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002434482$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kb1OwzAYRS1UJErpA7BFYmIw-Cf-G6sKSqUWpFJmy0mckja1i528Py5BYuNb7h2Orj7pXIOR884CcIvRA0ZIPEZMCGIQYQkxZgKyCzDGSnBIJZKj1AnhUCgpr8A0xj1KR4mQlI3BYt23XQM7ezz5YNrs1bu2cdaEbGN3wcbYeJetbffpq6z2IVsZV0XTZcuj2dnsvTn2rekScwMua9NGO_3NCfh4ftrOX-DqbbGcz1awzCnqYGEF5byukGJCqJoiRXKCDLeiYDnOiSgNM2UlOS8VL4wUKJW6QBQVhaV1RSfgfth1odaHstHeND-58_oQ9GyzXeo0pLjAib0b2FPwX72Nnd77Prj0niYKK8okpexfClNFueSIJooMVDyFxu1s-KMw0mcLerCgkwV9tqAZ_QYMRnm8
CitedBy_id crossref_primary_10_1007_s10706_022_02354_9
crossref_primary_10_1515_geo_2020_0165
crossref_primary_10_1007_s12205_020_0056_8
crossref_primary_10_3390_app9214543
crossref_primary_10_1007_s12205_023_0197_7
Cites_doi 10.1007/s12205-016-0522-5
10.1016/j.gsf.2014.10.003
10.1109/MGRS.2015.2510084
10.1080/2150704X.2014.963733
10.1109/LGRS.2011.2109934
10.1016/j.rse.2011.10.014
10.1080/01431160801891820
10.1080/136588197242266
10.1016/j.rse.2004.03.014
10.1214/aos/1176347963
10.7848/ksgpc.2014.32.3.217
10.1016/j.actaastro.2006.07.003
10.1080/01431160305001
10.1109/TGRS.2006.872081
10.1016/j.rse.2004.08.008
10.1175/JAM2166.1
10.3390/s91109011
ContentType Journal Article
Copyright Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018
KSCE Journal of Civil Engineering is a copyright of Springer, (2018). All Rights Reserved.
Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: KSCE Journal of Civil Engineering is a copyright of Springer, (2018). All Rights Reserved.
– notice: Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID 7QH
7UA
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ACYCR
DOI 10.1007/s12205-018-1157-5
DatabaseName Aqualine
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Korean Citation Index
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 787
ExternalDocumentID oai_kci_go_kr_ARTI_4149671
10_1007_s12205_018_1157_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
ZMTXR
ZY4
ZZE
~A9
7QH
7UA
8FD
AAPKM
AAYWO
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
C1K
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACDTI
ACYCR
ID FETCH-LOGICAL-c430t-be7366fd095779f3092420a6e7b541427ca5acd866c96ba8706c9fb030bbe3fd3
IEDL.DBID BENPR
ISSN 1226-7988
IngestDate Sun Jan 19 03:36:37 EST 2025
Fri Jul 25 12:24:25 EDT 2025
Fri Jul 25 10:45:09 EDT 2025
Fri Feb 21 02:33:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gaussian process regression
multi linear regression
multivariate adaptive regression splines
MODIS products
Landsat image simulation
weather environmental parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-be7366fd095779f3092420a6e7b541427ca5acd866c96ba8706c9fb030bbe3fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1007/s12205-018-1157-5
PQID 2139368603
PQPubID 1496355
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_4149671
proquest_journals_2919358335
proquest_journals_2139368603
springer_journals_10_1007_s12205_018_1157_5
PublicationCentury 2000
PublicationDate 20190200
20190201
2019-02
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 2
  year: 2019
  text: 20190200
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle KSCE journal of civil engineering
PublicationTitleAbbrev KSCE J Civ Eng
PublicationYear 2019
Publisher Korean Society of Civil Engineers
Springer Nature B.V
대한토목학회
Publisher_xml – name: Korean Society of Civil Engineers
– name: Springer Nature B.V
– name: 대한토목학회
References Seidel, Datcu (CR19) 1993
Walker, Beurs, Wynne, Gao (CR22) 2012; 117
Zheng, John, Chen, Crow, Bresee, Moine, Ryu (CR24) 2004; 93
Bruno, Barca, Goncalves, Lay-Ekuakille, Maggi, Passarella (CR1) 2016
Gao, Masek, Schwaller, Hall (CR4) 2006; 44
Huang, Townshend (CR8) 2003; 24
Stark (CR20) 1993
Hultquist, Chen, Zhao (CR9) 2014; 5
La, Eo, Lee, Park, Koo (CR13) 2015; 52
Li, Menzel, Jhang, Sun, Schmit, Gurka, Weisz (CR16) 2004; 43
Lee, Park, Eo, Pyeon, Han, Yeon, Lee (CR15) 2017; 21
Park, Eo (CR17) 2014; 32
Quiros, Felicisimo, Cuartero (CR18) 2009; 2009
Jensen (CR10) 2003
Giannico (CR5) 2007; 60
Grasso, Sengupta, Dostalek, Brummer, Demaria (CR6) 2008; 29
Kumar, Skidmore, Knowles (CR12) 1997; 11
Kim, Eo, Lee, Jang, Han (CR11) 2013; 4
Lee, Lee, Eo, Kim, Woo, Han (CR14) 2017; 189
Tuia, Verrelst, Alonso, Pérez-Cruz, Camps-Valls (CR21) 2011; 8
Gustau, Jochem, Jordi, Valero, Fernando, Jose (CR7) 2016; 4
Friedman (CR3) 1991; 19
Chen, Per, Masayuki, Zhihui, Bunkei, Lars (CR2) 2004; 91
Zhang, Goh (CR23) 2016; 7
References_xml – volume: 4
  start-page: 111
  issue: 8
  year: 2013
  end-page: 117
  ident: CR11
  article-title: Remote sensed image simulation methodology
  publication-title: Journal of Next Generation Information Technology, JNIT Journals
– start-page: 6
  year: 2016
  end-page: 11
  ident: CR1
  article-title: Evolutionary polynomial regression model for the prediction of coastal dynamics
  publication-title: Second Edition Workshop on Environmental Instrumentation and Measurements
– volume: 21
  start-page: 1434
  issue: 4
  year: 2017
  end-page: 1442
  ident: CR15
  article-title: Analysis on the applicability of simulated image from SPOT 4 HRVIR image
  publication-title: KSCE Journal of Civil Engineering, KSCE
  doi: 10.1007/s12205-016-0522-5
– volume: 7
  start-page: 45
  issue: 1
  year: 2016
  end-page: 52
  ident: CR23
  article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability
  publication-title: Geoscience Frontiers, Elsevier
  doi: 10.1016/j.gsf.2014.10.003
– volume: 4
  start-page: 58
  issue: 2
  year: 2016
  end-page: 78
  ident: CR7
  article-title: A Survey on Gaussian processes for Earthobservation data analysis: A comprehensive investigation
  publication-title: IEEE Geoscience and Remote Sensing Magazine, IEEE
  doi: 10.1109/MGRS.2015.2510084
– volume: 5
  start-page: 723
  issue: 8
  year: 2014
  end-page: 732
  ident: CR9
  article-title: Comparison of Gaussian process regression, random forest regression and support vector regression for burn severity assessment in diseased forests
  publication-title: Remote Sensing Letters, Taylor & Francis Online
  doi: 10.1080/2150704X.2014.963733
– volume: 8
  start-page: 804
  issue: 4
  year: 2011
  end-page: 808
  ident: CR21
  article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation
  publication-title: IEEE Geoscience and Remote Sensing Letters, IEEE
  doi: 10.1109/LGRS.2011.2109934
– volume: 117
  start-page: 381
  year: 2012
  end-page: 393
  ident: CR22
  article-title: Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology
  publication-title: Remote Sensing of Environment, Elsevier
  doi: 10.1016/j.rse.2011.10.014
– volume: 29
  start-page: 4373
  issue: 15
  year: 2008
  end-page: 4384
  ident: CR6
  article-title: Synthetic satellite imagery for current and future environmental satellites
  publication-title: International Journal of Remote Sensing, Taylor & Francis Online
  doi: 10.1080/01431160801891820
– start-page: 381
  year: 2003
  end-page: 395
  ident: CR10
  publication-title: Remote sensing of the environment: An Earth resource perspective (2nd edition)
– volume: 11
  start-page: 475
  issue: 5
  year: 1997
  end-page: 497
  ident: CR12
  article-title: Modelling topographic variation in solar radiation in a GIS environment
  publication-title: International Journal of Geographical Information Science, Taylor & Francis Online
  doi: 10.1080/136588197242266
– volume: 189
  start-page: 1
  issue: 7
  year: 2017
  end-page: 13
  ident: CR14
  article-title: A comparative study on generating simulated Landsat NDVI images using data fusion and regression method—the case of the Korean Peninsula
  publication-title: Environmental Monitoring and Assessment, Springer
– year: 1993
  ident: CR20
  publication-title: Synthetic image generator model: Application of specular and diffuse reflectivity components and performance evaluation in the visible region
– volume: 91
  start-page: 332
  issue: 3-4
  year: 2004
  end-page: 344
  ident: CR2
  article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter
  publication-title: Remote Sensing of Environment, Elsevier
  doi: 10.1016/j.rse.2004.03.014
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  end-page: 67
  ident: CR3
  article-title: Multivariate adaptive regression splines
  publication-title: The Annals of Statistics, JSTOR
  doi: 10.1214/aos/1176347963
– volume: 32
  start-page: 217
  issue: 3
  year: 2014
  end-page: 223
  ident: CR17
  article-title: Generation of simulated geospatial images from global elevation model and SPOT ortho-image
  publication-title: Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Korea Science
  doi: 10.7848/ksgpc.2014.32.3.217
– start-page: 1
  year: 1993
  end-page: 12
  ident: CR19
  publication-title: Fusion of real and synthetic images for remote sensing scene understanding
– volume: 60
  start-page: 119
  issue: 2
  year: 2007
  end-page: 131
  ident: CR5
  article-title: Remote sensing of vegetation in the Calabrian region
  publication-title: Acta Astronautica, Elsevier
  doi: 10.1016/j.actaastro.2006.07.003
– volume: 24
  start-page: 75
  issue: 1
  year: 2003
  end-page: 90
  ident: CR8
  article-title: A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover
  publication-title: International Journal of Remote Sensing, Taylor & Francis Online
  doi: 10.1080/01431160305001
– volume: 44
  start-page: 2207
  issue: 8
  year: 2006
  end-page: 2218
  ident: CR4
  article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
  publication-title: IEEE Transactions on Geoscience and Remote Sensing, IEEE
  doi: 10.1109/TGRS.2006.872081
– volume: 52
  start-page: 586
  issue: 5
  year: 2015
  end-page: 608
  ident: CR13
  article-title: Image simulation from multitemporal Landsat images
  publication-title: GIScience and Remote Sensing, Taylor & Francis Online
– volume: 93
  start-page: 402
  issue: 3
  year: 2004
  end-page: 411
  ident: CR24
  article-title: Estimating above ground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA
  publication-title: Remote Sensing of Environment, Elsevier
  doi: 10.1016/j.rse.2004.08.008
– volume: 43
  start-page: 1619
  issue: 11
  year: 2004
  end-page: 1634
  ident: CR16
  article-title: Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters
  publication-title: Journal of Applied Meteorology, AMS Journals
  doi: 10.1175/JAM2166.1
– volume: 2009
  start-page: 9011
  issue: 11
  year: 2009
  end-page: 9028
  ident: CR18
  article-title: Testing Multivariate Adaptive Regression Splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images
  publication-title: Sensors, MDPI
  doi: 10.3390/s91109011
SSID ssj0000327835
Score 2.1745138
Snippet Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The...
SourceID nrf
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 777
SubjectTerms Civil Engineering
Correlation
Engineering
Environmental factors
Gaussian process
Geotechnical Engineering & Applied Earth Sciences
Humidity
Image acquisition
Imaging techniques
Industrial Pollution Prevention
Landsat
Landsat satellites
Methods
Normalized difference vegetative index
Parameters
Process parameters
Regression
Regression analysis
Remote sensing
Satellite imagery
Simulation
Spectroradiometers
Splines
Surveying and Geo-Spatial Information Engineering
Temperature
Visibility
Weather
토목공학
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXvRgfEYUzcZ4M5u03Vd7JEYEIxxUEm6bfZUQpCSA_9_Z0ooaLp562G6bzGx3v-nM9w1Cd94wLTSVxGoqCJN5TLQ0nMTawOrSCXdp4Dv3B6I7ZM8jPqp43Mu62r1OSZY79YbsFjihEPpC1BNzSfgu2uMQuoc6vmHS_v6xEtHQPCKULsIEQYIeV53N3PYUOFOKRf4LX_5JiZYnTecIHVYQEbfXPj1GO744QQc_hANP0VPJmyWVrtQHHqwFL_QCv_rxurK1wP2yOTQGVIpfAqFXr3BvBtsHfpvMqqZdZ2jYeXx_6JKqJQKxjEYrYrykQuQOgJGUWU4jCJ-SSAsP9mUxS6TVXFuXCmEzYXRIYtosN_AlG-Np7ug5ahTzwl8gHFuWOM0TCRiReasNdz7lLk-ZZT5yroluwTBqaicqSFCH63iupgsFQLun4GWZkHETtWq7qWrxL1UCqJKKVER0-3AWh-QrpbyJ7mtTb4Y3OsrBUwo8pYKnFL_8191XaB-wTbYusG6hxmrx6a8BP6zMTblevgA4yryL
  priority: 102
  providerName: Springer Nature
Title Multi-temporal Nonlinear Regression Method for Landsat Image Simulation
URI https://link.springer.com/article/10.1007/s12205-018-1157-5
https://www.proquest.com/docview/2139368603
https://www.proquest.com/docview/2919358335
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002434482
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2019, 23(2), , pp.777-787
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6V5AKHqg8QKTSyKm7IYnf92j2htEoCbYkqSiQ4WX5thIANhPT_d7xxmraqelppfbA0Y4-_eX0DcBQsN9IwRZ1hknJV59QoK2huLJ4uUwhfxn7ni4k8m_LP1-I6BdyeU1nl2ia2htrPXYyRnxQIVZgsZcZOH59onBoVs6tphMYWdNEEl6ID3Y_DybfLX1GWjMVJErGOMUecQSM51zq12fbPxTZT9KbRkcqFovGBaRb1H2Dzr_xo--yMXsHLhBfJYKXg1_AiNG9g5zcWwbcwbptoaSKZuieTFfuFWZDLMFuVuTbkop0UTRCikq-xu9csyfkD2hLy_fYhTfDaheloePXpjKb5CNRxli2pDYpJWXtESUpVNcvQlyoyIwMKm-e8UM4I43wppaukNTGj6ara4rW2NrDasz3oNPMm7APJHS-8EYVCwMiDM1b4UApfl9zxkHnfgw8oGH3nbnXko47f2VzfLTSi7nONm1VS5T04XMtNp5vwrDd6-_dylcdMLGOiB8drUW-WN6TKUVMaNaWjprR49_-9DmAbkU21Kq8-hM5y8SO8R_SwtH3YKkfjPnQH45svw346MPh3Wgx-AqEYxNc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxRBFH5BOCgHIi5hAKVi9GQqdndt3QdjXMAZmZkYhIRbUVsTAvTAMIbwp_yNvuqFEWO8cepDJV2Vt9X36m0Ar4PlRhqmqDNMUq7KlBplBU2NRekymfB5rHcejWX_gH87FIcL8KurhYlplZ1NrA21n7j4Rv4uQ6jCZC4T9uHiksapUTG62o3QaMRiN9xco8t29X7wBfn7Jst2tvc_92k7VYA6zpIZtUExKUuP2EKpomQJeiBZYmTAI_KUZ8oZYZzPpXSFtCbGAV1RWlQGawMrPcP_PoAlhBkFatHSp-3x973bV52ExckVMW8yRVxDYzOwLpRa1-vFslb03tFxS4Wi8UKrpuUdcPtXPLa-5nYew0qLT8nHRqBWYSFUT2D5j66FT-FrXbRL26ZWZ2TcdNswU7IXjpu02oqM6snUBCExGcZqYjMjg3O0XeTHyXk7MewZHNwL5Z7DYjWpwhqQ1PHMG5EpBKg8OGOFD7nwZc4dD4n3PXiFhNGn7kTH_tfxezzRp1ONKH-gcbNCqrQHmx3ddKt5V3ouJ_9eLtIY-WVM9OBtR-r58ryJc-SURk7pyCkt1v-_1xY87O-Phno4GO9uwCNEVUWT2r0Ji7Ppz_ACkcvMvmzFhcDRfUvob53U_jE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRUJwKKUtYgsFq-qtMiTxKzkiYGF5rKq2SPTk-hWEFkK1hEt_PeNNoqWIC-KUg_P-JvY3mZlvAL4Gy400TFFnmKRclSk1ygqaGovWZTLh81jvfDaSR-f8-EJctH1O77ps9y4k2dQ0RJWmqt7568udWeFbrA9FNxg9oFQoKuZgnkdt9h7M7x7-Ppn9ZklYbCURExnxEEmjOlcX23zuPLjCVJPyP7b5JEA6XXcGy_Cnu-Mm3WS8fV_bbffviZjjKx7pHbxtOSnZbYxoBd6E6j0sPVIq_ACH00Jd2gpZXZNRo7BhJuRHuGxSaStyNu1GTZAGk9NYQWxqMrzB-Yr8vLppu4R9hPPBwa-9I9r2YKCOs6SmNigmZemRiSlVlCxBfy1LjAwIKE95ppwRxvlcSldIa2LU1BWlxanD2sBKz1ahV91WYQ1I6njmjcgUklIenLHCh1z4MueOh8T7PnzBd6_H7kpHzeu4vbzV44lGZj_UeLFCqrQPGx00uv3a7nSGNJbJXCbs-eEijdFexkQfvnVAzIZnws0RAY0I6IiAFp9etPcWLHzfH-jT4ehkHRaRVxVNcvcG9OrJffiM3KW2m619PgCTgeUf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-temporal+Nonlinear+Regression+Method+for+Landsat+Image+Simulation&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Hye+Jin+Kim&rft.au=Seo%2C+Dae+Kyo&rft.au=Yang+Dam+Eo&rft.au=Jeon%2C+Min+Cheol&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=23&rft.issue=2&rft.spage=777&rft.epage=787&rft_id=info:doi/10.1007%2Fs12205-018-1157-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon