Multi-temporal Nonlinear Regression Method for Landsat Image Simulation
Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of...
Saved in:
Published in | KSCE journal of civil engineering Vol. 23; no. 2; pp. 777 - 787 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Civil Engineers
01.02.2019
Springer Nature B.V 대한토목학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-7988 1976-3808 |
DOI | 10.1007/s12205-018-1157-5 |
Cover
Loading…
Abstract | Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of correlation with the observed data distribution than the commonly used multiple linear regression equation. In this study, Multivariate Adaptive Regression Splines (MARS) and Gaussian Process Regression (GPR) were considered as methods of multiple nonlinear regression. In addition to weather, environmental parameters such as temperature and humidity were added to analyze the input parameters in the regression process. Here, the GPR method of nonlinear regression results show significant improvement in Landsat image simulation. Furthermore, regardless of the season, simulation results using multiple parameter combinations showed the highest correlation with the reference images when temperature (ground), humidity, precipitation, visibility distance, Normalized Difference Vegetation Index (NDVI), and three types of radiation were applied. It was confirmed that introduction of Moderate Resolution Imaging Spectroradiometer (MODIS) products had little positive effects on the results. Thus, the GPR method defined here provides the best simulation results by employing multiple parameters in the calculation. |
---|---|
AbstractList | Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of correlation with the observed data distribution than the commonly used multiple linear regression equation. In this study, Multivariate Adaptive Regression Splines (MARS) and Gaussian Process Regression (GPR) were considered as methods of multiple nonlinear regression. In addition to weather, environmental parameters such as temperature and humidity were added to analyze the input parameters in the regression process. Here, the GPR method of nonlinear regression results show significant improvement in Landsat image simulation. Furthermore, regardless of the season, simulation results using multiple parameter combinations showed the highest correlation with the reference images when temperature (ground), humidity, precipitation, visibility distance, Normalized Difference Vegetation Index (NDVI), and three types of radiation were applied. It was confirmed that introduction of Moderate Resolution Imaging Spectroradiometer (MODIS) products had little positive effects on the results. Thus, the GPR method defined here provides the best simulation results by employing multiple parameters in the calculation. KCI Citation Count: 9 Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of correlation with the observed data distribution than the commonly used multiple linear regression equation. In this study, Multivariate Adaptive Regression Splines (MARS) and Gaussian Process Regression (GPR) were considered as methods of multiple nonlinear regression. In addition to weather, environmental parameters such as temperature and humidity were added to analyze the input parameters in the regression process. Here, the GPR method of nonlinear regression results show significant improvement in Landsat image simulation. Furthermore, regardless of the season, simulation results using multiple parameter combinations showed the highest correlation with the reference images when temperature (ground), humidity, precipitation, visibility distance, Normalized Difference Vegetation Index (NDVI), and three types of radiation were applied. It was confirmed that introduction of Moderate Resolution Imaging Spectroradiometer (MODIS) products had little positive effects on the results. Thus, the GPR method defined here provides the best simulation results by employing multiple parameters in the calculation. |
Author | Kim, Hye Jin Park, Wan Yong Seo, Dae Kyo Jeon, Min Cheol Eo, Yang Dam |
Author_xml | – sequence: 1 givenname: Hye Jin surname: Kim fullname: Kim, Hye Jin organization: Dept. of Advanced Technology Fusion, Konkuk University – sequence: 2 givenname: Dae Kyo surname: Seo fullname: Seo, Dae Kyo organization: Dept. of Advanced Technology Fusion, Konkuk University – sequence: 3 givenname: Yang Dam surname: Eo fullname: Eo, Yang Dam organization: Dept. of Advanced Technology Fusion, Konkuk University – sequence: 4 givenname: Min Cheol surname: Jeon fullname: Jeon, Min Cheol email: mcblue@konkuk.ac.kr organization: Dept. of Advanced Technology Fusion, Konkuk University, Advanced Technology Research Institute, LoDiCS – sequence: 5 givenname: Wan Yong surname: Park fullname: Park, Wan Yong organization: Agency for Defense Development |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002434482$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kb1OwzAYRS1UJErpA7BFYmIw-Cf-G6sKSqUWpFJmy0mckja1i528Py5BYuNb7h2Orj7pXIOR884CcIvRA0ZIPEZMCGIQYQkxZgKyCzDGSnBIJZKj1AnhUCgpr8A0xj1KR4mQlI3BYt23XQM7ezz5YNrs1bu2cdaEbGN3wcbYeJetbffpq6z2IVsZV0XTZcuj2dnsvTn2rekScwMua9NGO_3NCfh4ftrOX-DqbbGcz1awzCnqYGEF5byukGJCqJoiRXKCDLeiYDnOiSgNM2UlOS8VL4wUKJW6QBQVhaV1RSfgfth1odaHstHeND-58_oQ9GyzXeo0pLjAib0b2FPwX72Nnd77Prj0niYKK8okpexfClNFueSIJooMVDyFxu1s-KMw0mcLerCgkwV9tqAZ_QYMRnm8 |
CitedBy_id | crossref_primary_10_1007_s10706_022_02354_9 crossref_primary_10_1515_geo_2020_0165 crossref_primary_10_1007_s12205_020_0056_8 crossref_primary_10_3390_app9214543 crossref_primary_10_1007_s12205_023_0197_7 |
Cites_doi | 10.1007/s12205-016-0522-5 10.1016/j.gsf.2014.10.003 10.1109/MGRS.2015.2510084 10.1080/2150704X.2014.963733 10.1109/LGRS.2011.2109934 10.1016/j.rse.2011.10.014 10.1080/01431160801891820 10.1080/136588197242266 10.1016/j.rse.2004.03.014 10.1214/aos/1176347963 10.7848/ksgpc.2014.32.3.217 10.1016/j.actaastro.2006.07.003 10.1080/01431160305001 10.1109/TGRS.2006.872081 10.1016/j.rse.2004.08.008 10.1175/JAM2166.1 10.3390/s91109011 |
ContentType | Journal Article |
Copyright | Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018 KSCE Journal of Civil Engineering is a copyright of Springer, (2018). All Rights Reserved. Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
Copyright_xml | – notice: Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: KSCE Journal of Civil Engineering is a copyright of Springer, (2018). All Rights Reserved. – notice: Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
DBID | 7QH 7UA 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ACYCR |
DOI | 10.1007/s12205-018-1157-5 |
DatabaseName | Aqualine Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Korean Citation Index |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3808 |
EndPage | 787 |
ExternalDocumentID | oai_kci_go_kr_ARTI_4149671 10_1007_s12205_018_1157_5 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 ZMTXR ZY4 ZZE ~A9 7QH 7UA 8FD AAPKM AAYWO ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR C1K DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACDTI ACYCR |
ID | FETCH-LOGICAL-c430t-be7366fd095779f3092420a6e7b541427ca5acd866c96ba8706c9fb030bbe3fd3 |
IEDL.DBID | BENPR |
ISSN | 1226-7988 |
IngestDate | Sun Jan 19 03:36:37 EST 2025 Fri Jul 25 12:24:25 EDT 2025 Fri Jul 25 10:45:09 EDT 2025 Fri Feb 21 02:33:47 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Gaussian process regression multi linear regression multivariate adaptive regression splines MODIS products Landsat image simulation weather environmental parameters |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-be7366fd095779f3092420a6e7b541427ca5acd866c96ba8706c9fb030bbe3fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://dx.doi.org/10.1007/s12205-018-1157-5 |
PQID | 2139368603 |
PQPubID | 1496355 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_4149671 proquest_journals_2919358335 proquest_journals_2139368603 springer_journals_10_1007_s12205_018_1157_5 |
PublicationCentury | 2000 |
PublicationDate | 20190200 20190201 2019-02 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 2 year: 2019 text: 20190200 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | KSCE journal of civil engineering |
PublicationTitleAbbrev | KSCE J Civ Eng |
PublicationYear | 2019 |
Publisher | Korean Society of Civil Engineers Springer Nature B.V 대한토목학회 |
Publisher_xml | – name: Korean Society of Civil Engineers – name: Springer Nature B.V – name: 대한토목학회 |
References | Seidel, Datcu (CR19) 1993 Walker, Beurs, Wynne, Gao (CR22) 2012; 117 Zheng, John, Chen, Crow, Bresee, Moine, Ryu (CR24) 2004; 93 Bruno, Barca, Goncalves, Lay-Ekuakille, Maggi, Passarella (CR1) 2016 Gao, Masek, Schwaller, Hall (CR4) 2006; 44 Huang, Townshend (CR8) 2003; 24 Stark (CR20) 1993 Hultquist, Chen, Zhao (CR9) 2014; 5 La, Eo, Lee, Park, Koo (CR13) 2015; 52 Li, Menzel, Jhang, Sun, Schmit, Gurka, Weisz (CR16) 2004; 43 Lee, Park, Eo, Pyeon, Han, Yeon, Lee (CR15) 2017; 21 Park, Eo (CR17) 2014; 32 Quiros, Felicisimo, Cuartero (CR18) 2009; 2009 Jensen (CR10) 2003 Giannico (CR5) 2007; 60 Grasso, Sengupta, Dostalek, Brummer, Demaria (CR6) 2008; 29 Kumar, Skidmore, Knowles (CR12) 1997; 11 Kim, Eo, Lee, Jang, Han (CR11) 2013; 4 Lee, Lee, Eo, Kim, Woo, Han (CR14) 2017; 189 Tuia, Verrelst, Alonso, Pérez-Cruz, Camps-Valls (CR21) 2011; 8 Gustau, Jochem, Jordi, Valero, Fernando, Jose (CR7) 2016; 4 Friedman (CR3) 1991; 19 Chen, Per, Masayuki, Zhihui, Bunkei, Lars (CR2) 2004; 91 Zhang, Goh (CR23) 2016; 7 |
References_xml | – volume: 4 start-page: 111 issue: 8 year: 2013 end-page: 117 ident: CR11 article-title: Remote sensed image simulation methodology publication-title: Journal of Next Generation Information Technology, JNIT Journals – start-page: 6 year: 2016 end-page: 11 ident: CR1 article-title: Evolutionary polynomial regression model for the prediction of coastal dynamics publication-title: Second Edition Workshop on Environmental Instrumentation and Measurements – volume: 21 start-page: 1434 issue: 4 year: 2017 end-page: 1442 ident: CR15 article-title: Analysis on the applicability of simulated image from SPOT 4 HRVIR image publication-title: KSCE Journal of Civil Engineering, KSCE doi: 10.1007/s12205-016-0522-5 – volume: 7 start-page: 45 issue: 1 year: 2016 end-page: 52 ident: CR23 article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability publication-title: Geoscience Frontiers, Elsevier doi: 10.1016/j.gsf.2014.10.003 – volume: 4 start-page: 58 issue: 2 year: 2016 end-page: 78 ident: CR7 article-title: A Survey on Gaussian processes for Earthobservation data analysis: A comprehensive investigation publication-title: IEEE Geoscience and Remote Sensing Magazine, IEEE doi: 10.1109/MGRS.2015.2510084 – volume: 5 start-page: 723 issue: 8 year: 2014 end-page: 732 ident: CR9 article-title: Comparison of Gaussian process regression, random forest regression and support vector regression for burn severity assessment in diseased forests publication-title: Remote Sensing Letters, Taylor & Francis Online doi: 10.1080/2150704X.2014.963733 – volume: 8 start-page: 804 issue: 4 year: 2011 end-page: 808 ident: CR21 article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation publication-title: IEEE Geoscience and Remote Sensing Letters, IEEE doi: 10.1109/LGRS.2011.2109934 – volume: 117 start-page: 381 year: 2012 end-page: 393 ident: CR22 article-title: Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology publication-title: Remote Sensing of Environment, Elsevier doi: 10.1016/j.rse.2011.10.014 – volume: 29 start-page: 4373 issue: 15 year: 2008 end-page: 4384 ident: CR6 article-title: Synthetic satellite imagery for current and future environmental satellites publication-title: International Journal of Remote Sensing, Taylor & Francis Online doi: 10.1080/01431160801891820 – start-page: 381 year: 2003 end-page: 395 ident: CR10 publication-title: Remote sensing of the environment: An Earth resource perspective (2nd edition) – volume: 11 start-page: 475 issue: 5 year: 1997 end-page: 497 ident: CR12 article-title: Modelling topographic variation in solar radiation in a GIS environment publication-title: International Journal of Geographical Information Science, Taylor & Francis Online doi: 10.1080/136588197242266 – volume: 189 start-page: 1 issue: 7 year: 2017 end-page: 13 ident: CR14 article-title: A comparative study on generating simulated Landsat NDVI images using data fusion and regression method—the case of the Korean Peninsula publication-title: Environmental Monitoring and Assessment, Springer – year: 1993 ident: CR20 publication-title: Synthetic image generator model: Application of specular and diffuse reflectivity components and performance evaluation in the visible region – volume: 91 start-page: 332 issue: 3-4 year: 2004 end-page: 344 ident: CR2 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter publication-title: Remote Sensing of Environment, Elsevier doi: 10.1016/j.rse.2004.03.014 – volume: 19 start-page: 1 issue: 1 year: 1991 end-page: 67 ident: CR3 article-title: Multivariate adaptive regression splines publication-title: The Annals of Statistics, JSTOR doi: 10.1214/aos/1176347963 – volume: 32 start-page: 217 issue: 3 year: 2014 end-page: 223 ident: CR17 article-title: Generation of simulated geospatial images from global elevation model and SPOT ortho-image publication-title: Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Korea Science doi: 10.7848/ksgpc.2014.32.3.217 – start-page: 1 year: 1993 end-page: 12 ident: CR19 publication-title: Fusion of real and synthetic images for remote sensing scene understanding – volume: 60 start-page: 119 issue: 2 year: 2007 end-page: 131 ident: CR5 article-title: Remote sensing of vegetation in the Calabrian region publication-title: Acta Astronautica, Elsevier doi: 10.1016/j.actaastro.2006.07.003 – volume: 24 start-page: 75 issue: 1 year: 2003 end-page: 90 ident: CR8 article-title: A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover publication-title: International Journal of Remote Sensing, Taylor & Francis Online doi: 10.1080/01431160305001 – volume: 44 start-page: 2207 issue: 8 year: 2006 end-page: 2218 ident: CR4 article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance publication-title: IEEE Transactions on Geoscience and Remote Sensing, IEEE doi: 10.1109/TGRS.2006.872081 – volume: 52 start-page: 586 issue: 5 year: 2015 end-page: 608 ident: CR13 article-title: Image simulation from multitemporal Landsat images publication-title: GIScience and Remote Sensing, Taylor & Francis Online – volume: 93 start-page: 402 issue: 3 year: 2004 end-page: 411 ident: CR24 article-title: Estimating above ground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA publication-title: Remote Sensing of Environment, Elsevier doi: 10.1016/j.rse.2004.08.008 – volume: 43 start-page: 1619 issue: 11 year: 2004 end-page: 1634 ident: CR16 article-title: Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters publication-title: Journal of Applied Meteorology, AMS Journals doi: 10.1175/JAM2166.1 – volume: 2009 start-page: 9011 issue: 11 year: 2009 end-page: 9028 ident: CR18 article-title: Testing Multivariate Adaptive Regression Splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images publication-title: Sensors, MDPI doi: 10.3390/s91109011 |
SSID | ssj0000327835 |
Score | 2.1745138 |
Snippet | Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The... |
SourceID | nrf proquest springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 777 |
SubjectTerms | Civil Engineering Correlation Engineering Environmental factors Gaussian process Geotechnical Engineering & Applied Earth Sciences Humidity Image acquisition Imaging techniques Industrial Pollution Prevention Landsat Landsat satellites Methods Normalized difference vegetative index Parameters Process parameters Regression Regression analysis Remote sensing Satellite imagery Simulation Spectroradiometers Splines Surveying and Geo-Spatial Information Engineering Temperature Visibility Weather 토목공학 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXvRgfEYUzcZ4M5u03Vd7JEYEIxxUEm6bfZUQpCSA_9_Z0ooaLp562G6bzGx3v-nM9w1Cd94wLTSVxGoqCJN5TLQ0nMTawOrSCXdp4Dv3B6I7ZM8jPqp43Mu62r1OSZY79YbsFjihEPpC1BNzSfgu2uMQuoc6vmHS_v6xEtHQPCKULsIEQYIeV53N3PYUOFOKRf4LX_5JiZYnTecIHVYQEbfXPj1GO744QQc_hANP0VPJmyWVrtQHHqwFL_QCv_rxurK1wP2yOTQGVIpfAqFXr3BvBtsHfpvMqqZdZ2jYeXx_6JKqJQKxjEYrYrykQuQOgJGUWU4jCJ-SSAsP9mUxS6TVXFuXCmEzYXRIYtosN_AlG-Np7ug5ahTzwl8gHFuWOM0TCRiReasNdz7lLk-ZZT5yroluwTBqaicqSFCH63iupgsFQLun4GWZkHETtWq7qWrxL1UCqJKKVER0-3AWh-QrpbyJ7mtTb4Y3OsrBUwo8pYKnFL_8191XaB-wTbYusG6hxmrx6a8BP6zMTblevgA4yryL priority: 102 providerName: Springer Nature |
Title | Multi-temporal Nonlinear Regression Method for Landsat Image Simulation |
URI | https://link.springer.com/article/10.1007/s12205-018-1157-5 https://www.proquest.com/docview/2139368603 https://www.proquest.com/docview/2919358335 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002434482 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | KSCE Journal of Civil Engineering, 2019, 23(2), , pp.777-787 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6V5AKHqg8QKTSyKm7IYnf92j2htEoCbYkqSiQ4WX5thIANhPT_d7xxmraqelppfbA0Y4-_eX0DcBQsN9IwRZ1hknJV59QoK2huLJ4uUwhfxn7ni4k8m_LP1-I6BdyeU1nl2ia2htrPXYyRnxQIVZgsZcZOH59onBoVs6tphMYWdNEEl6ID3Y_DybfLX1GWjMVJErGOMUecQSM51zq12fbPxTZT9KbRkcqFovGBaRb1H2Dzr_xo--yMXsHLhBfJYKXg1_AiNG9g5zcWwbcwbptoaSKZuieTFfuFWZDLMFuVuTbkop0UTRCikq-xu9csyfkD2hLy_fYhTfDaheloePXpjKb5CNRxli2pDYpJWXtESUpVNcvQlyoyIwMKm-e8UM4I43wppaukNTGj6ara4rW2NrDasz3oNPMm7APJHS-8EYVCwMiDM1b4UApfl9zxkHnfgw8oGH3nbnXko47f2VzfLTSi7nONm1VS5T04XMtNp5vwrDd6-_dylcdMLGOiB8drUW-WN6TKUVMaNaWjprR49_-9DmAbkU21Kq8-hM5y8SO8R_SwtH3YKkfjPnQH45svw346MPh3Wgx-AqEYxNc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxRBFH5BOCgHIi5hAKVi9GQqdndt3QdjXMAZmZkYhIRbUVsTAvTAMIbwp_yNvuqFEWO8cepDJV2Vt9X36m0Ar4PlRhqmqDNMUq7KlBplBU2NRekymfB5rHcejWX_gH87FIcL8KurhYlplZ1NrA21n7j4Rv4uQ6jCZC4T9uHiksapUTG62o3QaMRiN9xco8t29X7wBfn7Jst2tvc_92k7VYA6zpIZtUExKUuP2EKpomQJeiBZYmTAI_KUZ8oZYZzPpXSFtCbGAV1RWlQGawMrPcP_PoAlhBkFatHSp-3x973bV52ExckVMW8yRVxDYzOwLpRa1-vFslb03tFxS4Wi8UKrpuUdcPtXPLa-5nYew0qLT8nHRqBWYSFUT2D5j66FT-FrXbRL26ZWZ2TcdNswU7IXjpu02oqM6snUBCExGcZqYjMjg3O0XeTHyXk7MewZHNwL5Z7DYjWpwhqQ1PHMG5EpBKg8OGOFD7nwZc4dD4n3PXiFhNGn7kTH_tfxezzRp1ONKH-gcbNCqrQHmx3ddKt5V3ouJ_9eLtIY-WVM9OBtR-r58ryJc-SURk7pyCkt1v-_1xY87O-Phno4GO9uwCNEVUWT2r0Ji7Ppz_ACkcvMvmzFhcDRfUvob53U_jE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRUJwKKUtYgsFq-qtMiTxKzkiYGF5rKq2SPTk-hWEFkK1hEt_PeNNoqWIC-KUg_P-JvY3mZlvAL4Gy400TFFnmKRclSk1ygqaGovWZTLh81jvfDaSR-f8-EJctH1O77ps9y4k2dQ0RJWmqt7568udWeFbrA9FNxg9oFQoKuZgnkdt9h7M7x7-Ppn9ZklYbCURExnxEEmjOlcX23zuPLjCVJPyP7b5JEA6XXcGy_Cnu-Mm3WS8fV_bbffviZjjKx7pHbxtOSnZbYxoBd6E6j0sPVIq_ACH00Jd2gpZXZNRo7BhJuRHuGxSaStyNu1GTZAGk9NYQWxqMrzB-Yr8vLppu4R9hPPBwa-9I9r2YKCOs6SmNigmZemRiSlVlCxBfy1LjAwIKE95ppwRxvlcSldIa2LU1BWlxanD2sBKz1ahV91WYQ1I6njmjcgUklIenLHCh1z4MueOh8T7PnzBd6_H7kpHzeu4vbzV44lGZj_UeLFCqrQPGx00uv3a7nSGNJbJXCbs-eEijdFexkQfvnVAzIZnws0RAY0I6IiAFp9etPcWLHzfH-jT4ehkHRaRVxVNcvcG9OrJffiM3KW2m619PgCTgeUf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-temporal+Nonlinear+Regression+Method+for+Landsat+Image+Simulation&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Hye+Jin+Kim&rft.au=Seo%2C+Dae+Kyo&rft.au=Yang+Dam+Eo&rft.au=Jeon%2C+Min+Cheol&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=23&rft.issue=2&rft.spage=777&rft.epage=787&rft_id=info:doi/10.1007%2Fs12205-018-1157-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |