Multi-temporal Nonlinear Regression Method for Landsat Image Simulation

Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering Vol. 23; no. 2; pp. 777 - 787
Main Authors Kim, Hye Jin, Seo, Dae Kyo, Eo, Yang Dam, Jeon, Min Cheol, Park, Wan Yong
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Civil Engineers 01.02.2019
Springer Nature B.V
대한토목학회
Subjects
Online AccessGet full text
ISSN1226-7988
1976-3808
DOI10.1007/s12205-018-1157-5

Cover

Loading…
More Information
Summary:Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of correlation with the observed data distribution than the commonly used multiple linear regression equation. In this study, Multivariate Adaptive Regression Splines (MARS) and Gaussian Process Regression (GPR) were considered as methods of multiple nonlinear regression. In addition to weather, environmental parameters such as temperature and humidity were added to analyze the input parameters in the regression process. Here, the GPR method of nonlinear regression results show significant improvement in Landsat image simulation. Furthermore, regardless of the season, simulation results using multiple parameter combinations showed the highest correlation with the reference images when temperature (ground), humidity, precipitation, visibility distance, Normalized Difference Vegetation Index (NDVI), and three types of radiation were applied. It was confirmed that introduction of Moderate Resolution Imaging Spectroradiometer (MODIS) products had little positive effects on the results. Thus, the GPR method defined here provides the best simulation results by employing multiple parameters in the calculation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1226-7988
1976-3808
DOI:10.1007/s12205-018-1157-5