SDFPoseGraphNet: Spatial Deep Feature Pose Graph Network for 2D Hand Pose Estimation

In the field of computer vision, hand pose estimation (HPE) has attracted significant attention from researchers, especially in the fields of human–computer interaction (HCI) and virtual reality (VR). Despite advancements in 2D HPE, challenges persist due to hand dynamics and occlusions. Accurate ex...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 22; p. 9088
Main Authors Salman, Sartaj Ahmed, Zakir, Ali, Takahashi, Hiroki
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the field of computer vision, hand pose estimation (HPE) has attracted significant attention from researchers, especially in the fields of human–computer interaction (HCI) and virtual reality (VR). Despite advancements in 2D HPE, challenges persist due to hand dynamics and occlusions. Accurate extraction of hand features, such as edges, textures, and unique patterns, is crucial for enhancing HPE. To address these challenges, we propose SDFPoseGraphNet, a novel framework that combines the strengths of the VGG-19 architecture with spatial attention (SA), enabling a more refined extraction of deep feature maps from hand images. By incorporating the Pose Graph Model (PGM), the network adaptively processes these feature maps to provide tailored pose estimations. First Inference Module (FIM) potentials, alongside adaptively learned parameters, contribute to the PGM’s final pose estimation. The SDFPoseGraphNet, with its end-to-end trainable design, optimizes across all components, ensuring enhanced precision in hand pose estimation. Our proposed model outperforms existing state-of-the-art methods, achieving an average precision of 7.49% against the Convolution Pose Machine (CPM) and 3.84% in comparison to the Adaptive Graphical Model Network (AGMN).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23229088