Mechanics of dystrophin deficient skeletal muscles in very young mice and effects of age
The MDX mouse is an animal model of Duchenne muscular dystrophy, a human disease marked by an absence of the cytoskeletal protein, dystrophin. We hypothesized that ) dystrophin serves a complex mechanical role in skeletal muscles by contributing to passive compliance, viscoelastic properties, and co...
Saved in:
Published in | American Journal of Physiology: Cell Physiology Vol. 321; no. 2; pp. C230 - C246 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The MDX mouse is an animal model of Duchenne muscular dystrophy, a human disease marked by an absence of the cytoskeletal protein, dystrophin. We hypothesized that
) dystrophin serves a complex mechanical role in skeletal muscles by contributing to passive compliance, viscoelastic properties, and contractile force production and
) age is a modulator of passive mechanics of skeletal muscles of the MDX mouse. Using an in vitro biaxial mechanical testing apparatus, we measured passive length-tension relationships in the muscle fiber direction as well as transverse to the fibers, viscoelastic stress-relaxation curves, and isometric contractile properties. To avoid confounding secondary effects of muscle necrosis, inflammation, and fibrosis, we used very young 3-wk-old mice whose muscles reflected the prefibrotic and prenecrotic state. Compared with controls,
) muscle extensibility and compliance were greater in both along fiber direction and transverse to fiber direction in MDX mice and
) the relaxed elastic modulus was greater in dystrophin-deficient diaphragms. Furthermore, isometric contractile muscle stress was reduced in the presence and absence of transverse fiber passive stress. We also examined the effect of age on the diaphragm length-tension relationships and found that diaphragm muscles from 9-mo-old MDX mice were significantly less compliant and less extensible than those of muscles from very young MDX mice. Our data suggest that the age of the MDX mouse is a determinant of the passive mechanics of the diaphragm; in the prefibrotic/prenecrotic stage, muscle extensibility and compliance, as well as viscoelasticity, and muscle contractility are altered by loss of dystrophin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0363-6143 1522-1563 |
DOI: | 10.1152/ajpcell.00155.2019 |