Improved wide-band Schiffman phase shifter

In this paper, one improved wide-band Schiffman phase shifter is presented by modifying the ground plane underneath the coupled lines. In this new design, with the ground plane under the coupled lines removed, the even-mode impedance will be increased substantially. Meanwhile, we propose that one ad...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 54; no. 3; pp. 1196 - 1200
Main Authors GUO, Yong-Xin, ZHANG, Zhen-Yu, LING CHUEN ONG
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, one improved wide-band Schiffman phase shifter is presented by modifying the ground plane underneath the coupled lines. In this new design, with the ground plane under the coupled lines removed, the even-mode impedance will be increased substantially. Meanwhile, we propose that one additional isolated rectangular conductor is placed under the coupled lines to act as one capacitor so that the odd-mode impedance is decreased. The proposed new design was simulated by the full-wave electromagnetic software IE3D and validated by the measurement. Compared with the cascading microstrip multisection coupled-line configuration, our newly proposed planar one with a patterned ground plane is small in size and, meanwhile, has a good performance. As an example, one Schiffman phase shifter on a double-sided printed circuit board is designed, simulated, fabricated, and measured. The measured amplitude and phase imbalance between the two paths are within 0.5 dB and 5/spl deg/, respectively, over the frequency band from 1.5 to 3.1 GHz, or around 70% bandwidth. The measured return loss is found to be better than -12 dB over the operating frequency band.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2005.864105